
Faculty of Engineering and Technology

Master of Software Engineering

Ensemble Feature Selection Metaheuristics

Algorithms with Layered-Recurrent Neural

Network for Software Fault Prediction

Author:

Subhi Maraa’beh (1155401)

Supervisor:

Dr. Majdi Mafarja

A thesis submitted in fulfillment of the requirements for the

degree of Master of Science in Software Engineering at

Birzeit University, Palestine

January 31, 2019

Faculty of Engineering and Technology

Master of Software Engineering

Master Thesis

Ensemble Feature Selection Metaheuristics Algorithms with Layered-Recurrent Neural

Network for Software Fault Prediction

 العصبية الطبقية المتكررة للتنبؤ بأعطال البرامجتجميع خوارزميات اختيار الميزات مع الشبكات

Author

Student Name: Subhi Maraa’beh

Student Number: 1155401

Supervisor

Dr. Majdi Mafarja

Committee:

Dr. Majdi Mafarja

Dr. Abdel Salam Sayyad

Dr. Sobhi Ahmed

This thesis was submitted in partial fulfillment of the requirements for the Master’s Degree in

software engineering from the Faculty of Graduate Studies, at Birzeit University, Palestine

1

Ensemble Feature Selection Metaheuristics Algorithms with Layered-Recurrent Neural

Network for Software Fault Prediction

By:

Subhi Maraa’beh

This thesis was prepared under the supervision of Dr. Majdi Mafarja and has been approved

by all members of the thesis examination committee

Approved by thesis committee

Dr. Majdi Mafarja (Chair), Birzeit University

Dr. Abdel Salam Sayyad (Member), Birzeit University

Dr. Sobhi Ahmed (Member), Birzeit University

Date Approved:____3/5/2021_____________

2

Declaration of Authorship
I, Subhi Maraa’beh (1155401), declare that this thesis titled, “Ensemble Feature
Selection Metaheuristics Algorithms with Layered-Recurrent Neural Network for
Software Fault Prediction” and the work presented in it are my own. I confirm
that:

• This work was done wholly or mainly while in candidature for a master
degree at Birzeit University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has
been clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given.
With the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed
myself.

Signed:

Date:

3

Acknowledgements

First of all I would thank Allah for getting this work done and my thesis advisor

Dr. Majdi Mafarja from the Department of Computer Science / faculty of Engi-

neering and Technology at Birzeit University. Dr. Majdi was always there when

I needed him, whether I ran into a problem or needed a question Dr. Majdi was

ready with the curing answer and advice.

This work couldn’t be achieved without the support of my beloved wife Razan

and her constant encouragement throughout my years of study, through the pro-

cess of researching and writing this thesis, nights and nights she was able to absorb

all the nervousness I went through.

I dedicate this success to my children Omar and Reem and whoever is coming

down the road, to my parents Abu/Um Yazan, brothers, sister and family, to

my friends all of them, and especially Ehab, Marwan and my partner Ali. This

accomplishment would not have been possible without them. Thank you.

Author

Subhi Maraa’beh

4

Abstract

Accоrding tо Nо Frее Lunch (NFL) thеоrеm, thеrе is nо аlgоrithm thаt is еfficiеnt

in sоlving аll оptimizаtiоn prоblеms [54]. Sеvеrаl machine learning (ML) prеdic-

tivе mоdеls hаvе bееn prоpоsеd by rеsеаrchеrs аnd thеsе mоdеls have shоwеd

gооd rеsults in prеdicting fаulty mоdulеs in sоftwаrе prоjеcts. Hоwеvеr, nоnе оf

thеm prоvеd tо bе gооd fоr аll sоftwаrе prоjеct typеs. Dеpеnding оn thе dаtаsеt

chаrаctеristics, bеst machine lеаrning vаriеs frоm dаtаsеt tо dаtаsеt. In this work,

three of the best wrapper feature selection (FS) algorithms (PSO, ACO and GA)

are combined together with three machine learning (ML) classifiers (ANN, DT

and kNN) to study the best combination out of the nine cross combinations, then

a novel approach that combines the results of the nine combinations based on a

majority voting technique of the best selected features were introduced and re-

sults found to outperform other FS model with significant difference, majority

technique increase the average area under curve (AUC) with 0.10 at minimum.

This research studied the relation between the search algorithm and the classi-

fier and proposed a new approach of combining the results of the different FS

combinations.

5

6

Contents

Acknowledgements 3

Abstract 4

1 Introduction 13

1.1 Motivation . 14

1.1.1 SFP, where to use? . 16

1.2 Problem Statement . 20

1.3 Research Objectives . 21

1.4 Thesis Organization . 22

2 Background 23

2.1 Software Fault Prediction (SFP) 25

2.2 Quality Metrics . 26

2.3 Machine Learning (ML) . 31

2.4 Feature Selection (FS) . 40

2.5 Meta-heuristic Optimization Algorithms 42

3 Related Work 49

4 Research Methodology 55

4.1 Research Approach . 55

7

4.1.1 Data Collection . 56

4.1.2 Implementation and validation Phase 56

4.1.3 Analysis phase . 60

5 Results 63

5.1 Experimental setup . 63

5.2 Datasets . 67

5.3 Performance Metrics . 69

5.4 Experimental Results . 70

5.4.1 Results without FS . 71

5.4.2 Results with FS . 72

5.4.3 Results of majority algorithm 74

5.4.4 Most Used Features . 83

5.4.5 Summary . 84

6 Conclusion and Future Direction 86

6.1 Conclusion . 86

6.2 Future Direction . 88

8

List of Figures

1.1 Software Fault Prediction model in SDLC 17

2.1 Quality Metrics . 28

2.2 Decision Tree. 34

2.3 AN example of L-RNN. 38

2.4 Definition of Nearest Neighbors. 40

2.5 Filter FS Methods. 41

2.6 Wrapper FS Methods. 42

2.7 PSO particles simulation. 46

4.1 Software Fault Prediction model 57

4.2 Majority voting Software Fault Prediction model 59

5.1 Example of features vector. 66

5.2 ROC curves and AUC values . 70

5.3 Features selection histogram. 84

9

List of Tables

2.1 Confusion Matrix for binary class problem 32

2.2 Perceptron data set example . 35

5.1 PSO Parameters . 64

5.2 ACO Parameters . 64

5.3 GA Parameters . 65

5.4 L-RNN Parameters . 65

5.5 PROMISE datasets details . 68

5.6 Confusion Matrix for binary class problem 70

5.7 Avg. AUC results of L-RNN on all datasets without FS 72

5.8 Results grouped by classifier . 73

5.9 Results with FS . 74

5.10 Results majority . 77

5.11 P-value results based on t-test . 78

5.12 Comparison between majority voting technique and the sate-of-the

art methods based on the average AUC values 79

5.13 Example of features histogram to generate majority solution 80

5.14 Number of features selected per Algorithm per dataset 81

5.15 Selected solution for each algorithm per dataset 82

5.16 Features histogram . 85

10

List of Acronyms and Abbreviations

ACO Ant Colony Optimization

AMC Avеrаgе Mеthоd Cоmрlехity

ANN Artificial Neural Network

AUC Area Under Curve

CA Afferent Couplings

CAM Cоhеsiоn Amоng Mеthоds оf Clаss

CBM Cоuрling Bеtwееn Mеthоds

CBO Coupling Between Object classes

CE Efferent Couplings

DAM Data Access Metric

DIT Depth of Inheritance Tree

DT Decision Tree

FS Feature Selection

GA Genetic Algorithms

IC Inhеritаnсе Cоuрling

KNN k-Nearest Neighbors

L-RNN Layered Recurrent Neural Network

LCOM Lack of Cohesion in Methods

LCOM3 Lack of Cohesion in Methods

LOC Lines Of Code

LR Logistic Regression

MFA Measure of Functional Abstraction

ML Machine Learning

MOA Measure of Aggregation

NFL Nо Frее Lunch

NLM Number of Local Methods

NMC Number of Methods per Class

NOC Number of Children

NOM Number of methods

NPM Number of Public Methods

OO Object Orientated

PSO Particle Swarm Optimization

QA Quality Assurance

RFC Response For а Class

SC Soft Computing

SDLC Software Development Life Cycle

SFP Software Fault Prediction

SLOC Source Lines Of Code

12

WMC Weighted Methods per Class

13

Chapter 1

Introduction

Software Quality assurance (QA) is an essential part of developing a robust sys-

tem that satisfies the users needs and requirements. QA is the set of systematic

actions performed by a QA team to provide a sense of trust and confidence that

the development life cycle of a software project conforms to established require-

ments, including functional and technical requirements as well as the managerial

requirements of keeping the schedule and operating within budget [30]. QA is

a process by itself, it is not a single action that gives a binary output, it is a

set of actions and a complex process that looks for any fault inside the system

and reproduce it, then report it to the related party to solve, then verify that

the solution actually fixed the fault and did not break anything else from system

functionalities.

In large sсalе aррliсatiоns, dоing all оf the QA aсtivitiеs fоr еvеry rеlеasе is a

diffiсult ореratiоn in tеrms оf timе and budgеt. Moreover, fоllоwing the “80:20”

rule which states that around 20% of the project is responsible of around 80% of its

software faults, idеntifying еrrоr-рrоnе mоdulеs will hеlр QA tеam with targеting

thе availablе tеsting rеsоurсеs оn these faulty modules as early as possible [53],

which inсrеasеs thе imроrtanсе оf the Sоftwarе fault рrеdiсtiоn (SFP). SFP is

14

defined as the process/procedure that results in dеvеlорing models that are used

in software development life cycle (SDLC) by software engineers for detecting

faulty software modules or classes, the sooner those models are executed the

better results we have [53], as a rеsult, bеttеr utilizatiоn fоr tеsting еffоrts. Thеsе

mоdеls are based on maсhinе lеarning tесhniquеs and/оr statistiсal tесhniquеs.

Fault prediction models can be used by different team members; the develop-

ers, the QA engineers and the code reviewers during the code inspection session

to locate possible faults. Detecting software faults in the early stages of the de-

velopment life cycle reduces the cost of test efforts and improves software quality

[62].

Fault prediction models are totally dependent on finding the suitable software

metrics, bесаusе оf the signifiсаnt diffеrеnсеs in mеtriсs реrfоrmаnсе. Hоwеvеr,

this is not an easy task to be accomplished as there are many software metrics

with nо сlеаr distinсtiоn rеgаrding thеir usаbility.

1.1 Motivation

Delivering a high quality software is the ultimate goal that any software com-

pany is trying to achieve. The definition of high quality softwares varies from

company to company based on the software usage, however all of them agree on

the importance of avoiding showing bugs, faults or failures to their customers,

hence software QA activities are done to maintain the good shape of the product

regardless before or after the release of the first product version.

Testing software products using the traditional methods takes a lot of time

and does not guarantee good results, since it depends on manual testing done

by humans [16]. That’s where the importance of SFP arises. Predicting soft-

ware faulty models helps in finding the faulty modules automatically, targeting

15

the faulty modules by the QA activities shall reduce the number of faults. The

earlier the faulty modules are identified the higher product’s quality is gained.

SFP models rely on machine learning (ML) and/or software metrics and/or soft

computing techniques [63]. SFP models that depends on software metrics use a

set of metrics to predict the faults [69], other models depend on the metrics that

measure the software change from iteration to another, such models proved to be

better predictors [69, 82].

Soft computing (SC) techniques (e.g., machine learning) proved their efficiency

in extracting useful information from real life complex systems. The SC techniques

are able to extract information from those systems even if the data is incomplete,

imprecise, or even incorrect partially. ML algorithms have been used widely in

the context of classifying software modules to faulty and none faulty [53]. Such

techniques use the software metrics of a software module as features and predict

if it is faulty or not based on previous learning experience from similar modules

or previous metrics on the same module. Malhotra [53] concluded that ML tech-

niques outperformed the traditional techniques such as the Logistic Regression

(LR), which is the most used statistical traditional approach. Artificial Neural

Network (ANN) is one of the most used ML technique in predicting the faultiness

of software modules in the early stages of developing a software product [55, 28].

However, the performance of ML techniques is highly dependent on the nature of

the provided data. Thats to say, the dimensionality of the dataset, the existent of

the noisy data, the existence of the redundant and/or irrelevant features. These

problems either degrade the performance of the learning algorithm, or increase the

required execution time for the learning process. Therefore, data preprocessing is

highly required to improve the performance of learning algorithms.

Data preprocessing is an important phase to construct an SFP model. It

includes collecting data from multiple sources, converting it to the right format,

16

clean redundant, noisy and irrelevant data. Data reduction (e.g., Feature Selection

(FS)) is one of the most important data preprocessing tasks. According to Liu

and Motoda [51], FS aims to reduce the number of features by eliminating non-

vital features and keeping the most informative ones. In the case of SFP problem,

FS is used to enhance the performance of the SFP model and to reduce the time

cost of the learning process [35].

Feature selection is the process of selecting a subset of the most relevant

features from the original set of features within predefined threshold [51], FS

process consists mainly of two main phase; subset generation, and subset the

evaluation. Metaheuristics algorithms proved their efficiency in searching for the

most important features in the whole feature set. However, different metaheuris-

tics algorithms show different behavior when dealing with different datasets. In

this research, nine combinations of three metaheuristics algorithms (i.e., Parti-

cle Swarm Optimization (PSO), Ant Colony Optimization (ACO), and Genetic

Algorithm (GA)) with three well known classification algorithms (i.e., Decision

Tree (DT), k-Nearest Neighbors (KNN), and Artificial Neural Network (ANN))

were proposed as FS algorithms, layered recurrent neural network (L-RNN) was

used as validator to validate the features subset generated by the FS combination.

Moreover, a novel approach of combining the selected features subsets of each FS

combination with a majority voting technique was proposed, and its results were

compared with the other nine combinations.

1.1.1 SFP, where to use?

Software quality assurance is a multi-step process that begins from the very early

stages of feature development until releasing this feature. SDLC consists of few

17

phases like planning, analysis, design, implementation and verification [52], how-

ever QA is a different concept from verification. QA includes requirements ver-

ification, design review, code review, functional testing, non-functional testing,

usability and acceptance testing. This research works with SFP models, which al-

low software engineers to focus development activities on fault-prone code, thereby

improving software quality and making better use of resources [35]. Before pro-

ceeding with explaining the SFP model in details a clarification where the SFP

models can be injected in SDLC is needed, so parties like QA engineers can get

insight when to use such models and how can they benefit from their existence.

Figure 1.1: Software Fault Prediction model in SDLC

Figure 1.1 clarifies where to inject the SFP model in the SDLC, it is assumed

that agile development methodologies have been followed, and iterative develop-

ment approach is used. In recent years, traditional waterfall methodology has

been replaced with agile software development approaches [6]. Examples of Agile

methodologies are but not limited to: Extreme programming, Kanban and Scrum

[28]. The steps of SDLC are explained as follows:

1. Requirements gathering and analysis

In this step client needs and requirements are collected, documented and

18

reviewed to be passed to the development team.

2. Analysis

In this step the development team start analyzing the requirements docu-

ment and make sure that they understand what the customer needs.

3. Design

In this step the development team start designing the feature, and see which

software components are to be changed while developing this feature, the

result of this step is a design document that explains the effect of adding

the new feature on the current systems in terms of which class and/or com-

ponents to be changed.

• SFP checkpoint

After the feature design is ready and the classes/components to affected

are known, here where the SFP model can be used to tell us about

these classes/components faulty status, are they in a good shape or

more effort to be made to solve the issues in these faulty classes, we

believe that this step gives the development team better insight on the

underlying system healthy status and helps in avoiding costly bugs in

early stage.

4. Implementation

In this step the development team builds the feature, theoretically the de-

velopment team should leave the code in a better state than before feature

development, so again here where SFP model can be beneficial to double

check that the project affected classes/components are in a better state than

before and not faulty.

19

• SFP checkpoint

As mentioned before, after implementing the feature the development

team should check that affected classes are still in healthy state if they

were healthy, if the to be affected classes were faulty then they should

be enhanced to avoid expanding the gap toward bug free modules

5. Local Testing

In this step the development team performs testing locally to make sure

that the feature works as expected and no regression bugs [48], Regression

testing is a testing process which is applied after a program is modified.

6. Deploy for Testing In this step the code got deployed to testing servers so the

QA team can verify that feature works as expected, as well as no regression

bugs has been introduced during the feature development.

• SFP checkpoint

SFP model should be run at this stage by the QA team to focus the

testing efforts on the faulty modules.

7. QA Testing

after running the SFP the QA team tests the system using multiple tech-

niques like black box testing, stress testing and load testing to make sure

that the system is ready to be released to clients

8. Release

In this step the new version got deployed to production servers and the

clients can see the new system and features that got developed during the

development cycle, here where the acceptance testing can be done.

This research studied the performance of three Meta-Heuristic algorithms

(e.g., PSO, ACO and GA) when combined with three classifiers (e.g., KNN, DT,

20

and ANN) to perform as FS methods. Different combinations were investigated to

test the assumption that the performance of each model depends on the optimiza-

tion algorithm and classifier used. Therefore, this research studied the effect of

combining different classifiers with different optimization algorithms on the SFP

model accuracy.

1.2 Problem Statement

Software projects are getting bigger every day. As a rule of thumb, the more code

written the bugs generated. Traditional ways of QA can’t find all the bugs and

requires long time to test all project aspects [16], therefore new ways for finding

bugs has been proposed such as SFP models.

SFP models classify software modules to faulty and non-faulty, so the faulty

modules can be targeted with more care by QA team. SFP models depend on

software metrics (Features) to classify modules, however, high number of features

may drive the model performance back and reduce its accuracy [74]. FS algo-

rithms can be injected to SFP model pipeline to reduce the data dimensionality

by excluding irrelevant and uninformative features to enhance the overall model

performance and increase its accuracy.

Many FS algorithms are available in the literature, however, according to NFL

theorem, there is no superior algorithm that can solve all NP-Hard problems ef-

ficiently [78]. Therefore, the current FS techniques can always be improved. In

spite of that; the door is still open for more improvements.

In the context of improving the learning outcome by finding the minimal

feature subsets from an original data set using meta-heuristic algorithms, this

21

thesis seeks to answer the following three research questions:

RQ1: Do the FS methods affect the performance of L-RNN model when pre-

dicting the software faults?

RQ2: Do the use of different combinations of meta-heuristics algorithms with

different classification algorithms, have different affects on the performance of

L-RNN?

RQ3: How the selection of the representative features from a dataset affects

the performance of the L-RNN model?

1.3 Research Objectives

This research aim is to propose a software fault predictor that is based on different

ML techniques, which are enhanced by employing the state of the art feature

selection algorithms. Three well-known classifiers (i.e., ANN, DT, and KNN)

are used and their efficiency is improved by reducing the dimensionality of the

used data samples by employing three bio-inspired feature selection algorithms

(i.e., GA, ACO, and PSO). To achieve this goal, three research objectives were

formulated as follows:

• To assess the performance of L-RNN classifier on the full datasets of software

fault prediction.

• To investigate the influence of different FS methods (nine methods) on the

performance of the L-RNN model.

• To assess the role of the mechanism of selecting the representative features

(selecting the best feature subset by applying the majority voting mecha-

nism) on the performance of L-RNN classifier.

22

1.4 Thesis Organization

The rest of this thesis is organized as follows: Chapter 1 includes a general in-

troduction about the main topic of this research, the motivation, the problem

statement, research questions and the research objectives. Chapter 2 provides

an overview of the SFP models, software quality metrics, ML techniques, feature

selection problem and meta-heuristic search algorithms.

In Chapter 3, the most important related works in the context of using swarm-

based algorithms, data mining, feature selection, feature selection techniques, SFP

models and iterative SFP models and techniques were analyzed and criticized.

The research methodology is presented in Chapter 4. The details of running all

experiments of the nine FS combinations, and the detailed steps of how to obtain

a majority voting solution and apply it in the SFP model are also explained.

Chapter 5 shows the experiments results and discussion of the proposed ap-

proaches. The results of running SFP model without FS are discussed in first

phase, then the results of running each FS combination alone, then the results

of the majority voting mechanism are discussed and compared with the nine FS

combinations, in the end the we provide a histogram diagram of the number of

selecting each feature in the ten obtained solutions for all the datasets and each

dataset alone. Finally, the conclusions and future directions were drawn in Chap-

ter 6. It focuses on general discussion, the main contribution of this research and

open the doors for some future works.

23

Chapter 2

Background

System failure is a condition that causes a system to behave incorrectly in a none

expected way, and makes the external system behavior to be incorrect. Usually,

systems fail because they do not satisfy the specifications and the user needs, or

because the specification may not describe its function. On the other hand, is an

internal failure or system state that causes the system failure in case it reached

the system interface and affects the users. A fault is a system state that is caused

by an error. Its a structural imperfection in a software system that affects the

overall system stability and may lead tо the overall failure [22].

In the SDLC, faults may begin from the time of requirements elicitation while

describing what the user needs from the system, in the design phase, or in the

development phase. The cost of fixing faults depends on the time when they were

discovered. That’s to say, fixing a fault in the requirements phase is much better

than discovering it in development phase. Discovering such a fault after delivering

the product to the customer, the cost will be much higher [44, 10].

Software quality assurance process can affect each phase of the SDLC. In this

section, we explain some of the QA activities [66, 31].

1. Reviews: is a set of review activities held during the SDLC, starting from

24

requirements until maintenance, usually reviews are made by experts to

other team members. Many ways are available to do a review, however all

of them aim to catch the faults as early as possible. Moreover, all these

ways share that the review highly depends on the reviewer experience and

judgment. This activity requires two persons from the development team;

the reviewer and the reviewee. Review activities include the following:

(a) Requirements elicitation reviews

(b) Formal design reviews

(c) Code inspections and walk-throughs

2. Expert Opinions: this activity to some extent is similar to the reviews,

however, Expert Opinions may include consulting experts from outside the

company, to advise on the design or the implementation of some features.

3. Software Testing: many types of software testing are usually applied in the

life cycle:

(a) Black box testing

(b) White box testing

(c) Automation testing

(d) Acceptance testing

(e) Load testing

4. Software maintenance components:

(a) Maintenance contract review

(b) Maintenance plan

(c) Maintenance staff training

25

(d) Maintenance procedures

(e) Maintenance quality cost

QA is very important part of the SDLC, below are some reasons [60]:

1. QA is important to check if any errors and defects were generated during

the development life cycle.

2. QA provides to the custоmеrs thе sеnsе оf rеliаbility аnd sаtisfасtiоn оn thе

аррliсаtiоn.

3. Quаlity рrоduсts bring сustоmеr’s соnfidеnсе, It is vеry imроrtаnt tо еnsurе

thе Quаlity оf thе рrоduсt.

4. Tеsting rеsults in а highеr quаlity рrоduсts thаt rеquirе lоwеr mаintеnаnсе

соst, аnd givеs mоrе ассurаtе, rеliаblе аnd соnsistеnt rеsults.

5. Tеsting will ensure satisfying system non-functional requirements, testing

will check some intangible important aspects of software such as system

performance and throughput.

6. It’s important to check that the system does not have any failures and will

not crash as this will be very ехреnsivе in thе futurе оr in thе lаtеr stаgеs

оf thе dеvеlорmеnt [61].

7. High quаlity рrоduсts аrе rеquirеd fоr аny sоftwаrе оrgаnizаtiоns tо stаy in

businеss.

2.1 Software Fault Prediction (SFP)

SFP is the process/procedure that produces models that are used in the SDLC

for predicting the faulty software modules or classes, the sooner those models are

26

run the better results we have [53], as a rеsult bеttеr utilizatiоn fоr tеsting еffоrts

[36]. These mоdеls are built using maсhinе lеarning tесhniquеs and/оr statistical

techniques.

SFP classifies software project modules to faulty and non-faulty by building

a model on fault data taken from similar projects or from previous releases of the

same project, if the module contains faults then its value is recorded as 1 (or 0

if does not). For SFP models software metrics are independent variables and the

faulty instances in the underlying dataset are dependent variables [13].

Below are the benefits of using those SFP models in development life cycle

[14, 15]:

• Enhance system the overall code quality by pointing out modules/classes

that need refactoring, and direct the developers eyes on them.

• Gives the alerts for software testing team to focus more on faulty modules to

test which will spare their time from checking and testing healthy modules.

• Enhance the software design by providing more decision points by identify-

ing the fault-рrоnе сlassеs by using сlass-lеvеl mеtriсs.

• Fault рrеdiсtiоn is an aррrоaсh tо rеaсh dереndablе systеms, using those

models will improve the system stability and reliability.

2.2 Quality Metrics

Software metrics are widely accepted tools to control and assure the software

quality [64]. There are various software metrics of content can be used in SFP.

The most popular types of metrics for software prediction are listed below (see

Figure (2.1)):

27

1. Procedural Metrics:

metrics that measure the cost of a software project, or of some project

activities such as documentation, original development, software mainte-

nance. Procedural metrics also cover effort metrics estimating the human

part, required for the completion of a product under construction. Earlier

development procedural metrics can be reused to assessing how much of the

development would be required for future projects, other metrics like lines

of code (LOC) considered to be procedural.

2. Object Oriented Metrics:

Objесt Oriеntеd (OO) mеtriсs рlаy аn essential rоlе in thе developing a bug

and fault frее sоftwаrе systems. Object Oriented is famous because that

it focuses on objects аs thе рrimе аgеnts invоlvеd in thе соmрutаtiоn to

reflect real life objects, each system entity will represent a class of data and

the related operations, object oriented design will give a re-usable, modular

and tidy code. Objесt оriеntеd mеtriсs аrе usеd tо mеаsurе рrореrtiеs оf

оbjесt оriеntеd dеsigns, mеtriсs suсh аs соhеsiоn, соuрling аnd inhеritаnсе

fоr а сlаss. In some reference they even consider Lines Of Code (LOC) and

Source Lines Of Code (SLOC) as object oriented metrics.

3. Process Metrics:

Process Matrices include code changes (delta) metrics, process, code churn,

history and developer metrics. These software metrics can be obtained from

the source code and the code repository [62]. These metrics are collected

iteratively in the course of system releases.

28

Figure 2.1: Quality Metrics

The above mentioned software metrics have been widely used in literature in

different SFP models. Based on [62], almost 49% of the studies used OO metrics

in SFP models, and around 27% of the studies used traditional metrics and in the

end 24% of the studies used process metrics.

Which metrics are useful for SFP?

• LOC (linеs оf соdе): fоund tо bе usеful аnd usеd till thеsе dаys in rеsеаrсh.

• MсCаbе’s сyсlоmаtiс соmрlехity: fоund tо bе usеful аnd ехtеnsivеly usеd,

ассоrding tо [62] this mеtriс fоund tо bе mоrе еffесtivе in lаrgе sсаlе рrоjесts

in thе соntехt оf SFP.

• Simрlе WMC (wеightеd mеthоds реr сlаss): Thе соmрlехity оf lосаl mеthоds

in the given сlаss, Thе WMC is thе numbеr оf lосаl mеthоds in the given

сlаss.

• NLM (Numbеr оf lосаl Mеthоds): is thе numbеr оf lосаl mеthоds in а сlаss

thаt саn bе ассеssеd оutsidе thе сlаss -> рubliс mеthоds.

29

• NOM (Numbеr оf mеthоds): is thе numbеr оf аll mеthоds in thе сlаss

inсluding thе inhеritеd оnеs.

• NMC (Numbеr оf mеthоds реr сlаss): thе numbеr оf рubliс, рrivаtе аnd

рrоtесtеd mеthоds in а сlаss nоt inсluding thе inhеritеd оnеs.

• WMC LOC: is а mеtriс реr mеthоd реr сlаss thе mеthоd соmрlехity is

dеfinеd using LOC mеtriс. Thе WMC is еquаl tо thе sum оf linеs оf соdе

оf аll lосаl mеthоds in а сlаss. In this саsе, WMC is а sizе mеаsurе.

• WMC MсCаbе: is а mеtriс реr mеthоd реr сlаss, thе соmрlехity оf еасh

mеthоd is саlсulаtеd using MсCаbе’s сyсlоmаtiс соmрlехity. Thе WMC is

thе sum оf аll lосаl mеthоds MсCаbе’s сyсlоmаtiс соmрlехity in а сlаss. In

this саsе, thе WMC is а соmрlехity mеаsurе.

• DIT (Depth of Inheritance Tree): mеаsurеs thе numbеr оf аnсеstоrs оf а

сlаss [34].

• NOC (Numbеr оf Childrеn): Numbеr оf immеdiаtе dеsсеndаnts оf а сlаss

[34].

• CBO (Coupling Between Object classes): thе соuрling bеtwееn twо сlаssеs

A аnd B if сlаss A usеs а mеthоd аnd/оr instаnсе vаriаblе оf сlаss B. Thе

CBO givеs thе numbеr оf сlаssеs tо whiсh а givеn сlаss is соuрlеd.

• RFC (Rеsроnsе Fоr а Clаss): Cоunt thе numbеr оf distinсt mеthоds invоkе

by а сlаss in rеsроnsе tо а rесеivеd mеssаgе.

• LCOM (Lасk оf Cоhеsiоn in Mеthоds): Cоunt thе numbеr оf mеthоds dо

nоt shаrе а fiеld tо thе mеthоd раirs thаt dо.

• CA (Affеrеnt Cоuрlings):is а mеtriс tо mеаsurе соuрling by mеаsuring hоw

mаny оthеr сlаssеs usе thе сlаss.

30

• CE (Effеrеnt соuрlings): Cоunt thе numbеr оf сlаssеs tо whiсh а сlаss

dереnds.

• NPM (Numbеr оf Publiс Mеthоds): Numbеr оf рubliс mеthоds dеfinеd in

а сlаss.

• LCOM3 (Lack of Cohesion in Methods): Cоunt thе numbеr оf соnnесtеd

соmроnеnts in а mеthоd grарh.

• DAM (Dаtа Aссеss Mеtriс): Cоmрutеs thе rаtiо оf рrivаtе аttributеs in а

сlаss.

• MOA (Mеаsurе оf Aggrеgаtiоn): Cоunt thе numbеr оf dаtа mеmbеrs dесlаrеd

аs сlаss tyре.

• MFA (Mеаsurе оf Funсtiоnаl Abstrасtiоn): Shоws thе frасtiоn оf thе mеthоds

inhеritеd by а сlаss tо thе mеthоds ассеssiblе by thе funсtiоns dеfinеd in

thе сlаss.

• CAM (Cоhеsiоn Amоng Mеthоds оf Clаss): Cоmрutеs thе соhеsiоn аmоng

mеthоds оf а сlаss bаsеd оn thе раrаmеtеrs list.

• IC (Inhеritаnсе Cоuрling): Cоunt thе numbеr оf соuрlеd аnсеstоr сlаssеs

оf а сlаss.

• CBM (Cоuрling Bеtwееn Mеthоds): Cоunt thе numbеr оf nеw оr rе-dеfinеd

mеthоds thоsе аrе соuрlеd with thе inhеritеd mеthоds.

• AMC (Avеrаgе Mеthоd Cоmрlехity): Mеаsurеs thе аvеrаgе mеthоd sizе fоr

еасh сlаss.

• mах_сс (MсCаbе’s сyсlоmаtiс соmрlехity): соunts thе mахimum numbеr

оf lоgiсаlly indереndеnt раths in а mеthоd.

31

• аvg_сс (MсCаbе’s сyсlоmаtiс соmрlехity): соunts thе аvеrаgе numbеr оf

lоgiсаlly indереndеnt раths in а mеthоd.

In general, Object Oriented and process metrics are useful for SFP, as for the

object oriented metrics the most successful metrics are the CK metrics [20, 19].

The CBO, WMC and RFC are considered as the best from the CK metrics suite

[62]. The code coupling metrics are more useful than inheritance and cohesion

metrics [62].

It is important to define two concepts, pre and post release faults, pre-release

faults are the faults that appear before releasing the first version of the system,

post-release faults are the faults which are shipped and released, the post-release

faults are more vague and harder to predict.

Process Metrics are mainly related with post-release metrics such as Delta

metrics, delta metrics are calculated as the difference of metrics values between

two versions of a software, process metrics are better than OO and traditional

metrics when it comes to SFP.

2.3 Machine Learning (ML)

ML is the process of enhancing the performance of computer program in a pro-

gressive manner. One of the most important ML applications is classification.

Classification is the process of mapping an input sample into one of the categories

of the original data based on a set of features.

The main idea behind the classification algorithms is to build a model that

can classify unseen inputs. Spam filtering is a common problem that has been

tackled using classification algorithms.

ML is multi-step process, the data need to be collected, then data need to be

pre-processed, if we know which features are the most informative ones then we

32

can use them otherwise feature reduction techniques need to be applied to enhance

the classification performance and accuracy. Feature reduction techniques are

defined as the set of processes that aims to remove irrelevant and noisy features

from a given dataset to keep the best fit subset of features. Data reduction

helps not only in enhancing the performance of the classifier also in enhancing

its accuracy by removing noisy features. Classifier accuracy can be calculated

in different ways, one way is to split the data set into training set used to train

the model and evaluation set used to calculate the performance of the model,

by counting the number of correctly and incorrectly classified test records, those

numbers are explained in the confusion matrix [29].

Table 2.1 explains the confusion matrix for binary class problem, the records

in the below table are explained as follows, TP is the number of records that

belong to class A and classified as class A, TN is the number of records that does

not belong to class A and classified as not class A, FP is the number of records

that does not belong to class A and classified as class A, FN is the number of

records that belong to class A and classified as not class A, generally speaking

TP and TN are the number of correctly classified records, However, FP and FN

are the number of incorrectly classified records.

Predicted Class

Class A Not Class A

Actual

Class

Class A TP FN

Not Class A FP TN

Table 2.1: Confusion Matrix for binary class problem

The most popular metrics to evaluate a ML model are area under curve (AUC),

accuracy and error rate [74, 29, 33], which are defined in equations 2.1 and 2.2:

33

Accuracy =
TP + TN

Total
(2.1)

ErrorRate =
FP + FN

Total
(2.2)

Below explained some of learning methods to be used in this research.

1. Decision Tree [29] is а simрlе cоmmоnly usеd clаssifiеr in dаtа mining which

crеаtеs а mоdеl thаt рrеdicts thе vаluе оf thе tаrgеt fеаturе (clаss) fоr thе

tеst sаmрlе bаsеd оn thе vаluеs оf thе inрut fеаturеs vеctоr. In thе trее

еаch non-lеаf nоdе cоrrеsроnds tо оnе оf thе inрut fеаturеs. Thеre аrе еdgеs

frоm а nоdе tо its childrеn fоr еаch thе роssiblе vаluе fоr thаt fеаturе, and

each leaf node represents a decision point (class label), each path from root

to leaf represents a classification rule, an example of simple decision tree

illustrated in figure 2.2 below.

34

Figure 2.2: Decision Tree.

Decision tree classifier is an eager learner [74]. There are many ways to

construct a decision tree from a given sample data, those trees different

from each other, however finding the optimal tree is an expensive operation.

Many algorithms have been developed to help find a near optimal tree, those

algorithms use a greedy strategy to grow the decision tree in a top-down

approach, one of the most famous algorithms is Hunt’s Algorithm, Hunt’s

Algorithm forms the basis of many implementations of DTs such as ID3,

C4.5, and CART.

To construct a DT an attribute must be selected as the root node. To get

the smallest and most efficient tree the root node must effectively split the

data, each split will try to classify/label a subset of the instances, the most

efficient split is the one that labels the highest number of instances which

is referred to as the most information gain [42]. The splitting continues

until all the instances are label/classified, DT is simple classifier and easy

35

to understand as it can be visualized as graph.

2. Artificial Neural Networks (ANN)[1] is a very interesting topic in the re-

search field and in the study field. Neural Networks consists of huge num-

ber of connected processors called neurons. The ANN has the capability to

develop an internal representation of a signal pattern that is presented as

input to the network [37].

ANN is widely used as a classifier for solving the classification problems.

ANN is a ML algorithm that need to be trained, once trained ANN can

predict the classification of new data. ANN is able to function and learn

even if the data is noisy. ANN has many models starting from the simplest

which is the perceptron (one layer neural network) to multi layer neural

networks, feed forward and recurrent networks.

Perceptron model consists of input nodes, weighted links and output nodes,

let’s assume that we have a function that receives three boolean inputs and

outputs one if at least two of the input are true and outputs minus one

otherwise, table 2.2 illustrates the data for the example.

X1 X2 X3 Y

1 0 0 -1

1 0 1 1

1 1 0 1

1 1 1 1

0 0 0 -1

0 0 1 -1

0 1 0 -1

0 1 1 1

36

Table 2.2: Perceptron data set example

The perecptron model for the above dataset consist of three input nodes,

three weighted links and one output node, one solution is

Ŷ =

 1, if 0.3X1 + 0.3X2 + 0.3X3 − 0.4 > 0;

−1, if 0.3X1 + 0.3X2 + 0.3X3 − 0.4 < 0;
(2.3)

Where the 0.3 is the weight to learned and adjusted by the perceptron and

the 0.4 is bias factor t, the above equation can be seen as

Ŷ = sign(wdxd + wd−1xd−1 + ...+ w1x1 + w0x0 − t) (2.4)

The perceptorn keep updating the weights until a stopping condition is met

based on the following equation

wj
(k+1) = wj

(k) + λ(yi − ŷ(k)i)xij (2.5)

Where wj
(k) is the current weight, λ is the learning parameter that varies

from 0 to 1 and xij is the value of the jth attribute in the training example.

λ value need to be set wisely low values will make the new weight very

influenced by the old weight, however, high λ values will make the new

weight very influenced by the change of each new iteration, usually λ values

starts with relatively hight values and keep decreasing in each iteration [74].

The perceptron model described in equation 2.4 is linear combination of

x and w, and not all the spaces are linearly separable, more complicated

functions can be introduced to solve this problem.

37

3. Layered Recurrent Neural Networks (L-RNN): is more complex than the

perceptron model, it can contain multiple layers of perceptrons with hidden

layers, and can use other activation functions than the sign function such

as sigmoid, linear and hyperbolic tangent functions. L-RNN can solve any

classification problem including non-linear spaces [74]. The learning process

of L-RNN is a time-varying pattern, applying either feed-forward or feedback

connections.

Training L-RNN is similar to training the ANN, however, with a small tweak.

Each output node value depends on the current step calculations and on the

previous time step calculations not only on the current step calculations like

ANN. In L-RNN the output of some nodes is an input for other nodes so it

works as a feedback channel for the network. Feedback nodes remember the

values of the previous stage, so the output data of each stage will depend

on the input data of the current and previous stage [49].

38

Figure 2.3: AN example of L-RNN.

Figure 2.3 shows an example of L-RNN at time t. Given an input vector

I=(I1, ..., It), L-RNN computes the hidden vector H=(H1, ..., Ht) and

output vector O=(O1, ..., Ot) by multiple iterations using equations 2.6

and 2.7.

Ht = f(WHIIt +WHHHt−1 + bH) (2.6)

Ot = f(WOHHt + bO) (2.7)

39

Where f() is the activation function (i.e. sigmoid, linear or hyperbolic tan-

gent functions). WHI , WHH and WOH are weight matrices as follows: (i)

WHI matrix that shows the weights between input layer and hidden layer,

(ii) WHH matrix that the weights between a hidden layer with itself at cer-

tain time slot and (iii)WOH matrix that shows the weights between a hidden

layer and output layer. bH and bO are vectors that present bias parameters

which help each recurrent neuron to learn an offset.

4. kNN (k nеаrеst nеighbоrs) [74] is a simple straight forward classification

technique аnd оnе оf thе mоst widely usеd lеаrning аlgоrithms. From its

name kNN depends on the majority vote of the k nearest neighbors to

classify the new record, kNN is а lаzy nоn-pаrаmеtriс аlgоrithm. Thаt

mеаns thаt it dоеs nоt require any prior knowledge about the underlying

data. Thеrеfоrе, kNN соuld bе оnе оf thе сhоiсеs fоr сlаssifiсаtiоn whеn

thеrе is а littlе оr nо priоr knоwlеdgе оf thе dаtа distributiоn. The basic

idea is "If it wаlks likе а duсk, quасks likе а duсk, lооks likе а duсk, thеn

it’s prоbаbly а duсk.".

kNN needs three things to operate: 1- a training set of labeled records, 2-

Distance metric to compute the distance between the given records such as

Euclidean, cosine, Chebyshev distance [74], 3- k value which is the number

of neighbors to be considered to label the new record. figure 2.4 illustrates

the definition of k nearest neighbors, k value need to be set wisely as small

k value makes the model sensitive to noise points, however, large k values

may return invalid results as it contains values from other classes.

40

Figure 2.4: Definition of Nearest Neighbors.

2.4 Feature Selection (FS)

FS [59], is thе process оf dесiding оn a subsеt оf imроrtant fеaturеs fоr building

rеliablе lеarning mоdеls. Fеaturе sеlесtiоn mеthоds arе сlassifiеd as Filtеrs оr

Wraрреrs aссоrding оn hоw thеy еvaluatе thе fеaturе subsеt [50].

Filtеr mеthоds sеlесt thе sеt оf fеaturеs rеgardlеss thе mоdеl itsеlf, thеy usе

sоmе knоwn mеtriсs tо dесidе whiсh fеaturеs shоuld bе еliminatеd; likе Cоr-

rеlatiоn, Infоrmatiоn Gain and еntrорy [45] [50]. Filtеrs mеthоds might sеlесt

rеdundant variablеs sinсе thеy dо nоt соnsidеr thе rеlatiоn bеtwееn thе variablеs.

Whilе in Wraрреrs mеthоd; they try tо sеlесt subsеt оf variablеs tо lеarn thе

mоdеl. Adding or removing fеaturеs frоm largе datasеts decision basеd оn thе

rеsulting aссuraсy. Usually thеsе mеthоds bесоmе sеarсhing mеthоds duе tо thеir

high соmрutatiоnal соst [80].

Basеd оn Nо-Frее-Lunсh (NFL) thеоrеm, thеrе is nо maсhinе lеarning al-

gоrithm that is bеst fоr all sоftwarе рrоjесts fault рrеdiсtiоn. Eaсh рrоjесt has its

сharaсtеristiсs that makеs a сеrtain algоrithm is bеst tо рrеdiсt its faults, sо in-

stеad оf wоrking оn a оnе-sizе-fits-all algоrithm Dоrеs, Alvеs and Ruiz switсhеd tо

study a maсhinе lеarning rесоmmеndatiоns. Thеy intrоduсеd a nоvеl framеwоrk

fоr rесоmmеnding maсhinе lеarning algоrithms that is сaрablе оf autоmatiсally

idеntifying thе mоst suitablе algоrithm aссоrding tо thе sоftwarе рrоjесt fоr fault

41

рrеdiсtiоn [22].

Any FS algorithm can be seen as mixture of two steps, first search strategy

that aims to select a features subset from the original features vector, and the

evaluation step that evaluates the accuracy of the selected subset and evaluate

the goodness of the first step [51].

FS process can be visualized as three dimensional space of Evaluation measure

(Accuracy, Consistency and Classic), Search Strategy (Complete, Heuristic, Non-

Deterministic) and Generation Scheme (Forward, Backward and Random).

FS models can be multivariate and univariate based on the number of features

to be added to the current solution, univariate add/remove only one feature at a

time from current features subset, however, multivariate add/remove more than

one feature at a time.

Filters. Filter methods filter out features based on some evaluation criteria

independently of the learning algorithms. Evaluation criteria such as features

correlation and Shannons Entropy are widely used evaluators [33] figure 2.5 illus-

trates the process of filter feature selection methods.

Figure 2.5: Filter FS Methods.

Wrappers. As the feature selection process is pre-processing phase to enhance

the performance and accuracy for a learning algorithm then the learning results

should be taken into consideration in feature selection process [39].

Instead of using mathematical metrics as in filter methods Wrappers use the

learning algorithm metrics such as Accuracy, error rate and AUC (Area Under

42

Curve) to evaluate the selected features [51, 39, 17].

Wrappers are more time consuming than Filters as the learning algorithm/Classifier

(e.g kNN, DT, ANN) should be run as the subset evaluator in each iteration to

determine the goodness of the given subset [71, 51], The good news are despite

of this performance drawback Wrappers leads to a better classification accuracy

than Filters [71]. Figure 2.6 illustrates the process of wrapper feature selection

methods.

Figure 2.6: Wrapper FS Methods.

2.5 Meta-heuristic Optimization Algorithms

Feature selection is NP-hard problem [45], so finding the ultimate set of features

that gives the best accuracy can’t be obtained without searching the whole solu-

tion space. Assuming that n features are available in a dataset, then there will be

2N solutions [33]. The use of Meta-heuristic optimization search algorithms helps

in finding near optimal solution without the need to search the whole space of so-

lutions [45] [73]. In order for feature selection model to execute effectively, it must

be combined with a good search strategies. Subsets can be generated in different

ways for example starting with empty set of features then start adding features to

the empty solution, this strategy called sequential forward search (SFS), another

way is to start with a full set of features and start removing features from that

set, this strategy called sequential backward search (SBS).

43

SBS and SFS suffer from the fact that the feature is added or removed cannot

be added or removed again. That will reduce the chances of getting the optimal

solution. Random subset generation strategy can solve the mentioned problem.

However, the cost again is too high.

The strategies discussed above perform local search rather than global search,

so the chance of getting the optimal solution is low, beside the problem of getting

stuck in local optima.

Meta-heuristic algorithms tends to execute global search and local search in

a mixed manner, the idea is to utilize multiple search agents each initialized to

search in different area in the search space, each agent will start searching the

solution space while balancing between Exploration and Exploitation criteria.

Eхplоrаtiоn аnd Eхplоitаtiоn аrе twо соntrаdiсtоry сritеriа thаt shоuld bе

соnsidеrеd whеn using mеtаhеuristiс sеаrсh аlgоrithms [73]. Thе mеtаhеuristiс аl-

gоrithms аrе сlаssifiеd bаsеd оn thеsе twо сritеriа intо twо саtеgоriеs; pоpulаtion-

bаsеd аlgоrithms likе Swаrm intеlligеnсе, аnd lосаl-sеаrсh bаsеd аlgоrithms likе

simulаtеd аnnеаling. Eасh оf whiсh hаs аdvаntаgеs аnd disаdvаntаgеs, sо finding

а hybrid аlgоrithm thаt соmbinе bоth criteria eхplоrаtiоn аnd eхplоitаtiоn will

rеsult in gооd FS sеаrсhing rеsults. Thе rеsulting соmbinеd аlgоrithm is саllеd

mеmеtiс аlgоrithm [72].

Below introduced some of the algorithms that will be used in this research.

1. Particle Swarm Optimization PSO is a population based stochastic opti-

mization technique developed by Eberhart and Kennedy in 1995 [7]. The

algorithm is a mimic of flock of bird movement, it comes in both discrete

and continuous versions. FS can be seen as a discrete problem.

PSO is a population global search technique, where a set of particles are

44

defined. Each particle represents a potential solution. The particles initial-

ized with a random solution inside the solution space, then each particle

tends to optimize its solution based on some fitness function. The velocity

of each particle is a component of a random solution, personal best solution

and global best solution.

Personal best solution is the solution that gives the highest fitness value of

the particle itself so far. Global best is the best solution obtained of the

whole system. The particle velocity updated based on equation 2.8 and its

position is updated based on equation 2.9.

vid(t+1) = w(t)vid(t)+ c1r1d ∗ (Xpbest(t)−Xid(t))+ c2r2d(Xgbest−Xid(t)).

(2.8)

Xid(t+ 1) = Xid(t) + vid(t+ 1) (2.9)

Where w is inertia weight usually a positive number, r1 and r2 are two ran-

domly generated number from 0 to 1, and c1 and c2 are other two variables

to control the Eхplоrаtiоn аnd Exploitation of search criteria, Algorithm 1

describes the pseudo code of PSO.

45

Algorithm 1 PSO Algorithm
Parameters used for PSO in this research

let swarmSize: 40

let numberOfIterations: 3000

let initialVelocity: initial velocity

let initialPosition: initial position

let c1: 1.5 //variable to control the influence by global best

let c2: 1.5 //variable to control the influence by global best

let w: 0.8

initialize particles()

while currentIteration <= numberOfIterations do

for Each particle i do

update the velocity of each particle based on equation 2.8.

update the position of each particle based on equation 2.9.

if new personal best is better than old personal best then

update the personal best solution.

end if

if personal best is better than global best then

update the global best solution.

end if

end for

end while

return the global best solution

Figure 2.7 simulates how the particles initially may be distributed on the

search spaces and how particles converges to a certain solution in the search

space after keep updating their velocity in every iteration.

46

Figure 2.7: PSO particles simulation.

2. ACO Ant colony optimization (ACO) [23] is а population-based mеtаhеuris-

tiс algorithm for solving optimizing problems. Initially proposed by Marco

Dorigo in 1992. The algorithm mimics the real behavior of ants to find the

shortest path, each ant will follow some indications left by other ants called

pheromone. Each individual ANT оf the population will build the solution

for the given problem incrementally аnd stochastically.

Optimization problems needs to be represented in a graph based represen-

tation so the ants can build its solutions. At еасh iteration ants moves adds

or removes solution components so the final solution is ready. ACO [41, 24,

26] is аnоthеr prоmising аpprоасh tо sоlvе thе соmbinаtiоnаl оptimizаtiоn

prоblеms аnd hаs bееn widеly еmplоyеd in FS [2, 4].

The first usage for ACO was to solve the famous Trаvеling Sаlеsmаn Prоblеm

(TSP) [25] аnd thеn to many other NP-hard problems suсh аs vеhiсlе rоut-

ing, Quаdrаtiс аssignmеnt Prоblеm (QаP), sсhеduling and systеm fаult

detection [9]. Twо tеrms need to be defined: “updаtе sеlесtiоn mеаsurе

(USM)” аnd “lосаl impоrtаnсе (LI)” in thе асо-bаsеd FS mеthоd. ACO

similar to PSO starts with initializing set of ants in random positions in the

search space, then each ant will have a probability to update the next move.

47

Algorithm 2 ACO Algorithm
Parameters used for ACO in this research

let numberOfAnts: 20

let numberOfIterations: 3000

let initialPheromon: 1

let α: 0.8

let β: 0.8

let evaporationRate: 0.6

Evaluate initial population according to the fitness function.

Find the best solution of the population.

while currentIteration <= numberOfIterations do

Do until each ant build a solution

local trial update.

End Do

Update the pheromone.

Determine the best global ant.

end while

return the global best solution

3. Genetic algorithms (GA) [32] аrе hеuristiс lеаrning mоdеls bаsеd оn рrinсiрlеs

taken frоm nаturаl selection. In GA [27], thrее main genetic operators

(sеlесtiоn, сrоssоvеr, and mutatiоn) сan bе imрlеmеntеd in different ways.

GA starts with generating set of solutions as the initial set, then it applies

the genetic operators on those solutions iteratively until stop critera got

satisfied. For example number of iterations or accepted solution has been

generated.

The effect оf applying GA сrоssоvеr is huge on the solution, sо that will

48

mоve the affected сhrоmоsоmе a largе distanсе in рrоblеm sрaсе. Iteration

after iteration all the solutions will move toward a similar structure and the

crossover will have less effect on the affected chromosome (solution). So the

effect of GA operations will start with huge impact and decay over time.

Algorithm 3 Genetic Algorithm
Parameters used for GA in this research

let populationSize: 40

let numberOfIterations: 3000

let crossoverRate : 0.7

let mutationRate: 0.1

let selectionType: Roulette Wheel Selection

let corssoverType: single, double or uniform

Generate initial population.

Evaluate initial population according to the fitness function.

while currentIteration <= numberOfIterations do

Breed crossoverRate x populationSize new solution.

Select two parent solutions from current population.

if rand(0, 1.0) < mutationRate then

Mutate the child solution.

end if

Evaluate the child solution according to the fitness function

Add child to population.

Remove the crossoverRate x populationSize least-fit solutions from popula-

tion.

end while

return the global best solution

49

Chapter 3

Related Work

Software projects and components are getting more sophisticated and dependent

on other projects. Therefore, high quality and easy-to-maintain software became

a harder mission, keeping in mind that cost shouldn’t be ignored.

Software engineering is significant and fundamental in order to mend software

quality and minimize maintenance efforts before deploying systems. Software

engineering includes varied prediction processes like test effort prediction, cor-

rection cost prediction, reusability prediction, fault prediction, quality prediction

and security prediction.

Many of these processes are in their early stages and further studies are re-

quired to reach stabilized and powerful models. Sоftwаrе fаult рrеdiсtiоn is thе

current rеsеаrсh аrеа of thеsе prediction processes аnd lately multiple research

сеntеrs are working on new рrоjесts.

SFP models have been studied from 1990s till today, where fault-prone mod-

ules can be specified before system tests using these models. Based on recent

studies, the detection probability (PD) (71%) of fault prediction models possibly

is higher than PD of software reviews (60%) if a solid model is built [57].

In literature, different models are suggested to tackle the problem of SFP, this

50

includes the usage of DT, ANN and kNN as classifiers as well as the usage of

different optimization mechanisms for feature selection and data lessening which

includes ACO, PSO and GA algorithms.

Mandelbugs are faults that are generated under complex conditions, such as

integration bugs when interacting with other systems software or hardware, or

events ordering. Carroza et al. [12], introduced a new set of metrics that they

claimed to better predict Mandlebugs over traditional metrics. Those metrics are

related to Concurrency, I/O and Exception handling.

Carroza et al. worked on five prediction models (SVM, DT, MLP, BNs and

NB), the results showed that MLP and SVM outperformed other approaches, the

experiments were performed on NASA repository datasets, the evaluation has

been performed using the k-fold cross validation.

Cahill, Hogan, and Thomas [11] introduced new classification method called

Rank Sum to classify faulty software modules from other non-faulty modules.

They compared the performance of this new approach with studies based on the

Support Vector Machine (SVM) and Näıve Bayes (NB) Classifiers and evaluated

using the NASA Metrics Data Program (MDP) data sets.

Erturk and Sezer [28] proposed an SFP system that works on two stages. At

the first stage Fuzzy Inference System (FIS) was used without prior knowledge

about the project. In the second stage where some data about the project is

known (later development iterations) they applied ANN. Their model that follows

an iterative approach was better than other models. The authors took one step

forward and said that their model can predict software faults online. Moreover

the authors implemented a plugin on eclipse of their work.

Shatnawi [67] used ROC analysis. His results showed that those four metrics

(WMC, CBO, RFC and LCOM) has significant relationship with faults generated

on most of the releases. Shatnawi analysis applied on five systems, also he applied

51

ROC analysis to include/exclude features. In other words ROC analysis was used

as FS method. Shatnawi solution was validated using four ML models, logistic

regression, näıve Bayes, the nearest neighbors and C4.5 decision trees. His results

does not show a major improvement when used ROC analysis as FS.

Kalsoom [40] discussed the effect of two problems that face the ML learning

classifiers. Which are the imbalance problem and irrelevant features. Imbalance

problem is caused by redundant instances of similar classes, sampling or reduction

of class instances handles this problem. The research used Fisher linear discrim-

inant analysis (FLDA) as FS method. SMOTE and Resample used as sampling

strategies, they evaluated their results using nine classifiers using Precision, recall,

f -measure, and AUC as performance measures.

Malhotra et al. [53] in her systematic review showed that ML techniques can

be very helpful in SFP. However, the usage of those ML techniques is still not

widely used and sophisticated. More research need to be conducted to get more

general and applicable results. Her results also showed that DT was better than

other ML algorithms and Linear Regression models.

Moreover, Malhotra analyzed what software metrics are found to be useful

for SFP and found that CBO, RFC and LOC are the most useful among OO

metrics. As for the performance measures; Accuracy, precision, Recall, AUC and

F-Measure are the most used measures. The average AUC values for predicting

faulty modules varies from 0.7 to 0.83. She also observed that the evolutionary

algorithms such as ACO are not widely used in the SFP domain, noting that this

research used ACO as one of the FS algorithms.

Menzies et al. [57] after comparing different ML techniques concluded that

the best software quality metrics (features) to be used in SFP models are different

based on the dataset characteristics, and so does the algorithms performance. The

experiments has been carried out over public domain datasets.

52

Lessmann et al. [47] worked on the idea of comparing different ML algorithms

in the context of SFP. They built a framework to do this. they concluded that no

clear performance differences between different ML algorithms. Results were built

upon running 22 distinct classification model on 10 public domain datasets[22].

Song et al. [70] recapped that no studied schema takes control where the solu-

tion is to select assorted schema according to the selected dataset characteristics.

Tosun, Turhan, and Bener [75] drove tests on public datasets to prove the

validity of Zimmermann and Nagappan’s paper published in ICSE’08 [82]. Three

embedded software projects were used for the analysis. They concluded that

network measures are important indexes of fault-prone modules for large systems.

Performance valuation metrics used were PF, PD, and precision.

Chang, Chu, and Yeh [18] suggested a fault prediction process according to

organization rules to find out fault paradigms. They declared that prediction

results were stellar. The advantage of this method is the detected fault paradigms

that can be used in causative analysis to detect the sources of faults.

Mende and Koschke [56] assessed lines of code metric based prediction on

thirteen NASA datasets and this model acted well in conditions of area under

ROC curve (AUC) parameter and they weren’t able to show statistical variations

to some data mining algorithms. When effort-sensitive performance measure was

applied, a line of code metric based prediction process was the worst.

Binkley, Feild, and Lawrie [8] applied linear mixed-effects recession model

on Mozilla by using QALP score and total lines of code except blank lines and

comments. Determination coefficient was applied as performance valuation pa-

rameter. They declared that neither size measure nor QALP is good predictor for

Mozilla project.

Arisholma, Briand, and Johannessen [5] assessed fault-proneness models on

a large Java legacy system project. They concluded that modeling mechanism

53

has limited impact on the prognosis accuracy, process metrics are very useful

for fault prediction, and the best model is very dependent on the performance

valuation parameter. They suggested a surrogate measure of cost-effectiveness

for models assessment. Adaboost combined with C4.5 provided the best results

and mechanisms were applied with default parameters.

Shatnawi and Li [5] investigated three iterative release of eclipse. The aim

was to study the effectiveness of software quality metrics in SFP for post-release

software defects. The results showed that the prediction accuracy decayed release

after release. They used AUC as Performance evaluation metric. They performed

there experiments on class level metrics and they managed to predict error prone

classes and error severity after each release.

One important take out was that error severity is more useful than faulty class

classification, since saying that this class is faulty may give false alarm on very

low-severity faults.

Bingbing, Qian, Shengyong, and Ping [79] compared k-means clustering method

with Affinity Propagation clustering algorithm on two datasets. Their results

showed that Affinity Propagation was better than K-means clustering on those

datasets following Type-II error. They used Type-II error, Type-I error, and

entire correct classification rate (CCR) as performance evaluation metrics. The

two datasets that been used are Celestial Spectrum Analysis System and med-

ical imaging system datasets. Affinity Propagation reduced Type-II error and

increased CCR on software datasets and the number of cluster was two.

In recent years new trend to Ensemble methods for binary classification has

occurred and used widely. Misirli et al. [58] presented an ensemble method for

SFP by combining three different techniques namely Näıve Bayes, ANN, and Vot-

ing Feature Intervals. The results showed that ensemble classifier outperformed

Näıve Bayes classifier in terms of prediction accuracy.

54

Twala [77] used five SFP approaches as base learners for ensemble method.

The results again showed that ensemble methods outperformed individual classi-

fiers. The experiment were performed on a large space system.

Other studies [3, 43] have introduced new ensemble methods for SFP and

again emphasize on the above results that ensemble methods out perform the

individual classifiers.

Based on this review, it can be concluded that the method level metrics were

mostly used in predicting faulty modules in software components. Moreover,

ML mechanisms have been widely applied in SFP systems, and showed better

performance than that achieved by the traditional statistical methods. However,

the automatic prediction of the faulty parts in software components is not popular

in industry yet, especially with the emergent of automatic most of the real life

processes.

Moreover, this research proposes a study of different search algorithms and

classifiers combinations to check the correlation and affinity of search algorithm

and the classifier used. Also a new way of merging the results of different mod-

els using majority voting was proposed, this shall help researchers and software

engineers to save time and efforts, as well as to achieve high-quality results for

testing software.

55

Chapter 4

Research Methodology

This research studies the performance of different FS methods that combine a set

of SI algorithms(i.e., PSO, ACO, and GA), with different ML algorithms (i.e.,

KNN, DT, and ANN), where nine combinations of these algorithms have been

tested and evaluated. Figure 4.2 describes the proposed model.

Due to the stochastic nature of the SI algorithms, and due to the fact the each

algorithm has different behavior from other algorithms, three different SI algo-

rithms were adopted in this research. Moreover, three well-known classification

techniques were used as evaluators in a wrapper FS model. Nine combinations

of the SI (Swarm Intelligence) algorithms with the classification techniques were

tested, and the produced feature subset is recorded.

4.1 Research Approach

This thesis approach runs in a pipeline starting from Data collection where datasets

are collected and prepared for later stages ending with results validation where

FS solutions are validated using L-RNN classifier.

56

4.1.1 Data Collection

In this research nineteen software fault project were used from PROMISE [65]

public software engineering repository. These datasets are noise free and have no

missing values.

4.1.2 Implementation and validation Phase

Three SI algorithms and three classifiers were adopted in this thesis, code prepared

on Matlab environment, SI algorithms code has been taken from Yarpiz code store,

and for classifiers Matlab native libraries has been used.

Results clustered to three clusters based on FS type. First without FS where no FS

algorithm has been used, Second with FS running the 9 different FS combinations,

Third with Majority FS model. Results without FS model are generated by

sending each dataset as is without reducing its dimensionality to L-RNN classifier

(evaluation phase). Avg. AUC value has been saved for each dataset after 100

run per dataset.

Figure 4.1 shows the process followed in this thesis to generate results with

FS model. For each dataset run all SI and classifiers combinations, for each

combination keep iterating until a stop criteria has been met, stop criteria is

number of iterations or threshold fitness value has been reached.

By that the best solution was found. This solution is used to reduce the dataset

based on the selected features. The reduced dataset separated into training and

testing datasets, training dataset trained the L-RNN evaluator and testing dataset

evaluated the accuracy of the solution. In the end L-RNN model and AUC got

saved for analysis.

http://yarpiz.com/

57

Figure 4.1: Software Fault Prediction model

58

Figure 4.2 explains how the majority FS algorithm works, below the explana-

tion:

1. Choose set of datasets to be the input for SFP model.

2. Select SI algorithm (PSO, ACO, GA)

3. Send the selected features to evaluation phase.

4. Select classification algorithm (kNN, DT, ANN)

5. Keep iterating the model with same selection for x number of iterations to

give the chance classifier component to learn the data.

6. Save features subset, fitness value, classification algorithm used and SI algo-

rithm then try another classifier and SI combination, as shown in Figure 4.2

the result of this phase will be a solution with only specific number of fea-

tures selected, with the fitness value of this solution, this reduced solution

shall improve the accuracy and performance of deep learning component

which in result will improve the overall SFP accuracy and performance.

7. Calculate how many times each feature got selected in the 9 solutions, the

hypothesis here that the most selected feature in the solution is the most

critical feature that will drive the system accuracy.

8. Rank each feature. Ranking the feature calculated in a simple way by

dividing the sum of feature occurrences in all solutions on the number of

solutions.

9. Generate new feature subset using majority voting. In this step the x highest

ranked features has been taken to generate the best solution and passed it to

data reduction phase, the x number here is questionable, what value should

it take, two ways have been tested as follows:

59

Figure 4.2: Majority voting Software Fault Prediction model

60

• Best solution number of features, x will be equal to the number of

selected features of the best solution among the 9 solutions, in our

example solution 7 has the best accuracy .97 with 5 features selected,

so x will be 5.

• The average number of selected features among all the solutions, in our

example the solutions selected features numbers are (5,5,5,4,4,4,5,5,3)

respectively, the average number of selected features is 40/9 = 4.44 so

x will be 4.

10. Data reduction phase, in this phase the dataset got filtered based on the

selected features along with the output class and passed it to deep learning

phase.

11. Deep learning phase, the reduced data has been passed to layered recur-

rent neural network (L-RNN) component which is used as a classification

technique for SFP problem.

4.1.3 Analysis phase

In this phase we compared the 10 different SFP models based on AUC metric as

follows:

• Calculate the AUC (area under curve) of SFP model resulted from training

the model on the data generated from the majority voting phase.

• Calculate the AUC of SFP model resulted from training the model on the

data generated from each combination alone, for example solution 1 was

generated using ACO-kNN, the data will be reduced using this solution

then passed to deep learning phase, accuracy will be calculated.

61

• Sort the 10 SFP models based on avg. AUC (9 generated from each solution

alone and another one from the majority voting solution) and check which

combination resulted in the best AUC.

This research can enhance the performance of ML recommendation frame-

works by applying feature selection algorithms to reduce number of meta-features.

The results of the proposed approach above can be used in other dimension, in-

stead of only enhancing the SFP model, we can start recommending the best FS

combination to the project based on its meta features, as Dores, Alves and Ruiz

[22] proposed a framework for recommending the best ML of certain software

project, the proposed model as follows:

1. Choose set of datasets to be the input for recommendation system.

2. Define Meta-Features to be used and extract them from each dataset entered

3. Define input algorithms, define the set of algorithms that the system will

run on every dataset entered and the performance metrics and results will

be saved.

4. Define the performance metric to evaluate each algorithm metric.

5. Building the Meta-Database which embodies the knowledge of the relation-

ship between meta-features and algorithmic predictive performance.

6. Choosing meta-learner to build recommendation model.

7. All of the above steps are to build the recommendation model itself, at last

enter new dataset, extract its meta-features, and a result the best algorithm

to be recommended.

As seen in the above model [22] all meta-features of each dataset was extracted.

At least 50 datasets need to be used as recommended for significant meta-learning

62

analysis [22]. Each dataset contains 20 meta-features. Which results in huge

number of features to be measured and analyzed. This may result in performance

issue which contradicts with the whole purpose of fault prediction models that

aims to spare and optimize QA team time.

The aim of this thesis is to apply feature selection algorithms to select the

dominant meta-features. Then try to find the best features that can be used in

recommendation model for SFP.

63

Chapter 5

Results

In this chapter, the details of the experimental results were reported and discussed;

the results of the nine SFP models were analyzed, followed by the results the

proposed approach where the the majority voting technique was used to select

the feature subset. In this thesis, nineteen different datasets from the PROMISE

repository were used.

The remainder of this chapter is organized as follows: Section 5.1 describes

the experimental setup. Section 5.2 provides a brief overview of the used datasets

for evaluation and comparison purposes, followed by the details of the used per-

formance metrics in Section 5.3. Finally, in Section 5.4, the evaluation results are

reported and deeply analyzed and discussed.

5.1 Experimental setup

In this thesis, all experiments were run on a machine with Intel(R) Core(TM)

i7-7700 CPU @ 3.60GHz X 8 processors and 32GB RAM, and all algorithms

were implemented using Matlab. The details of the parameter settings of the

used algorithms are listed in the below tables. All parameters were set based on

64

preliminary runs.

The used parameters for PSO explained in table 5.1.

Table 5.1: PSO Parameters

Parameters Values

Number of iterations 3000

Degree of influence (c1&c2) 1.5

vmax 1.0

vmin 0

Inertia Weight (w) 0.8

The used parameters in ACO algorithms were explained in Table 5.2.

Table 5.2: ACO Parameters

Parameters Values

Number of iterations 3000

Population size (number of ants) 20

Initial pheromone 1.0

Pheromone Exponential Weight (α) 0.8

Heuristic Exponential Weight (β) 0.8

Evaporation Rate 0.6

Table 5.3 presented the basic parameters that were used for GA algorithm.

65

Table 5.3: GA Parameters

Parameters Values

Number of iterations 3000

Population size 40

Crossover rate 0.7

Mutation rate 0.1

Selection type Roulette Wheel Selection

Crossover type single, double, or uniform

The L-RNN parameters and configurations were explained in Table 5.4.

Table 5.4: L-RNN Parameters

Parameters Values

Number of iterations 1000

Number neurons in Input layer Number of input data

Number neurons in Hidden layer Number of input data
2

Number neurons in Output layer 1.0

Threshold value to transfer output 0.5

The experiments has been run as follows:

• For each SI-Classifier combination, keep iterating for a predefined number

of iterations to obtain the optimized solution. Each solution is represented

as a binary vector of 20 feature as shown in Figure 5.1, where the value

1 means that this feature is selected, and 0 means that the feature is not

selected.

• Each solution is evaluated based on a fitness function that combines both

classifier error rate and the selection ratio as shown in Equation 5.1.

66

Fitness = E ∗ (1 + (β ∗ |SF |
|NF |

)) (5.1)

where E is the error rate as show in equation 5.2, β is predefined variable

for this work is 0.5 based on literature, SF is the number of selected features

and NF is the total number of features.

E =
FP + FN

TP + TN + FP + FN
(5.2)

It is worth mentioning here that the fitness value take two factors into

consideration. First, the percentage of selected features, FS algorithms aims

to reduce the number of the selected features to enhance the performance

of the classification process later on, second the classification accuracy that

is expressed in terms of the error factor (E).

• The whole FS process has been repeated for twenty times for each combi-

nation on each dataset, to reduce the probability that an algorithm started

with a bad solution and trying to optimize a bad solution, in SI algorithm

the initial solution is important, generally SI algorithms try to solve the

problem of getting stuck in local optima, however, the initial solution that

the algorithms starts with may affect the algorithm accuracy.

• L-RNN classifier has been run for 100 times for each SI-Classifier combina-

tion and the average AUC of the all runs has been calculated.

Figure 5.1: Example of features vector.

67

5.2 Datasets

Many SFP datasets are publicly available such as PROMISE [65], NASA [68] and

AEEEM [21]. Dataset is a matrix, each row represents a software module/class,

each column represents a software metric such as CK [19, 20] object oriented

metrics. Each matrix entity represents a normalized value of the software metric

for this software module/class. The last column is the output a column, which is

a binary value that states if this module/class is faulty or not.

In this work, nineteen well known datasets from PROMISE repository were

used for testing and evaluation purposes. The PROMOSE datasets is one of the

most frequently used data sets in the literature [53]. PROMISE datasets are clean

and noise free. Datasets varies in size (i.e., 109 to 909 instances) and varies in the

percentage of the defective instances (i.e., 2.2% to 98.8%). Each dataset contains

a 20 object oriented metric that represent the features for the SFP model, those

metrics are (wmc, dit, noc, cbo, rfc, lcom, ca, ce, npm, lcom3, loc, dam, moa,

mfa, cam, ic, cbm, amc, max_cc, avg_cc), those metrics are explained in details

in section 2.2, table 5.5 describes the details of PROMISE datasets.

Industrial datasets were not used since they are not publicly available, which

make it hard for other researchers to reproduce and reuse the results built on

top of them. It was observed that very few studies used them for evaluating the

effectiveness of the ML techniques [53].

68

Table 5.5: PROMISE datasets details

Dataset # of Instances # of faulty instances Rate of faulty instances

ant-1.7 745 166 0.223

camel-1.0 339 13 0.038

camel-1.2 608 216 0.355

camel-1.4 872 145 0.166

camel-1.6 965 188 0.195

jedit-3.4 272 90 0.331

jedit-4.0 306 75 0.245

jedit-4.2 367 48 0.131

jedit-4.3 492 11 0.022

log4j-1.0 135 34 0.252

log4j-1.1 109 37 0.339

log4j-1.2 205 189 0.922

lucene-2.0 195 91 0.467

lucene-2.2 247 144 0.583

lucene-2.4 340 203 0.597

xalan-2.4 723 110 0.152

xalan-2.5 803 387 0.482

xalan-2.6 885 411 0.464

xalan-2.7 909 898 0.988

69

5.3 Performance Metrics

A set of performance metrics available for use to evaluate the performance of

the proposed model such as classification accuracy, area under curve (AUC), F-

measure, precision and recall. Many studies [81, 47] suggest to use AUC for

evaluating classifiers, since AUC is not affected in case of changing data distribu-

tions, so AUC metric will be used in this work for comparing and evaluating the

results of the different models.

AUC depends on a trade-off between True Positive rate against False Positive

rate. It can be calculated out of confusion matrix in figure 5.6 using two values,

Specificity (TN rate) and Sensitivity (TP rate) as follows:

Specificity =
TN

N
(5.3)

Sensitivity =
TP

P
(5.4)

The usage of AUC metric can be justified that in SFP domain classifying a

non-faulty module as faulty will result in extra testing for this module. However,

classifying a faulty module as faulty may cause a big damage to the software

product, a potential bug should have been reported, fixed and tested were ignored.

Moreover, datasets are imbalanced, for some datasets, 95% of the instances

are non-faulty and only 5% are faulty, so classifying all the non-faulty modules

correctly and all the faulty modules incorrectly will result in 95% accuracy, which

is good accuracy, however very bad in terms of efficiency. That’s why AUC is a

better performance metric.

Figure 5.2 shows the proposed rules to evaluate any classifier using AUC [38].

AUC measures enable researchers to generalize the results even if the data distri-

bution is changed [46].

70

Figure 5.2: ROC curves and AUC values

Predicted Class

Class A Not Class A

Actual

Class

Class A TP FN

Not Class A FP TN

Table 5.6: Confusion Matrix for binary class problem

5.4 Experimental Results

In this section a deep analysis for of the obtained results is presented. The com-

parisons are presented in three phases; the results obtained from running the

L-RNN classifier on all the datasets without feature selection are recorded in the

first phase, then the results of running the L-RNN using the reduced datasets

after applying FS combination on those datasets are reported, it also describes

the results of running the majority voting algorithm on every dataset.

Finally, features importance was analyzed by comparing the frequency of se-

lecting each feature using the ten algorithms, assuming that the importance of

the feature is expressed according to its frequency in the final feature subsets.

71

5.4.1 Results without FS

Table 5.7 shows the average AUC of training the L-RNN model using full datasets

(without applying FS) on all the 19 datasets. The results varies from excellent to

fair on different datasets (based on the classification presented in Figure 5.2). For

example, the model achieved 100% AUC for the log4j_1_1 dataset, in contrast

0.72 AUC for the xalan_2_6 dataset, the average AUC on all datasets is 0.84

and in 4th place compared to other FS combinations.

The main drawback of using full datasets in FS models is that the runtime of

training the model without reducing the dimensionality is high. Intuitively, the

assumption would be that running FS algorithm plus running the classifier would

consume less time in comparison with running the classifier alone. However, this

assumption is proven to be incorrect, as the SFP model is supposed to be run while

developing each software feature or bug solving multiple times, so the cumulative

runtime of the SFP model with FS will definitely be less than runtime the SFP

model without FS.

72

Table 5.7: Avg. AUC results of L-RNN on all datasets without
FS

Dataset AUC

ANT 0.95

Camel_1_0 0.80

Camel_1_2 0.74

Camel_1_4 0.97

Camel_1_6 0.76

Jedit_3_4 0.83

Jedit_4_0 0.80

Jedit_4_2 0.75

Jedit_4_3 0.77

log4j_1_0 0.96

log4j_1_1 1.00

log4j_1_2 0.97

lucene_2_0 0.85

lucene_2_2 0.79

lucene_2_4 0.95

xalan_2_4 0.78

xalan_2_5 0.75

xalan_2_6 0.72

xalan_2_7 0.74

5.4.2 Results with FS

Table 5.9 shows the results of executing each FS combination on every dataset.

Obviously, it can be observed that the results varies for each combination which

73

emphasize on the importance of choosing the best fit FS algorithm.

For PSO, ANN obtained the highest results with average 0.83, a deeper look

into the results per dataset shows that for many of the datasets this combination

can provide us with a near optimal solution to give near 100% AUC, for DT the

results are relatively low, kNN comes in the second place when running with PSO

with average 0.81.

For GA, ANN obtain the highest results with average 0.85, the GA-ANN

combination is the best combination among all the nine combinations, the results

for 13 datasets out of 19 is higher than or equal to 0.85, which are very good

results, only one outlier for GA-ANN for the xalan_2_4 dataset with a very low

average AUC equals to 0.35, for DT is worst combination among all the nine

combinations with average AUC equals to 0.64, for kNN the average AUC is 0.79.

For ACO, the best classifier to work with ACO is kNN with 0.84 average AUC,

this combination comes at the second stage among all the nine combinations, in

general ACO works well with all three classifiers with 0.81 and 0.80 average AUC

for ANN and DT respectively.

Table 5.8 shows that ANN is the best classifier, which works well with all the

SI search algorithms, and best to work with GA algorithm, for kNN it comes in

the second place to work well also with all the SI search algorithms. However,

kNN works best with ACO, for DT comes in third and last place as the worst

classifier, it works worst with GA algorithm.

Table 5.8: Results grouped by classifier

Classifier AVG. AUC

ANN 0.83

DT 0.74

kNN 0.81

Based on the above results we recommend the following:

74

Table 5.9: Results with FS

Dataset
Algorithm PSO-ANN PSO-DT PSO-kNN GA-ANN GA-DT GA-kNN ACO-ANN ACO-DT ACO-kNN

ANT 0.72 0.99 1.00 0.87 0.50 0.50 1.00 0.98 0.90
Camel_1_0 0.75 0.71 0.77 0.79 0.73 0.50 0.89 0.90 0.83
Camel_1_2 0.89 0.65 0.98 0.64 0.50 0.88 0.91 1.00 1.00
Camel_1_4 0.92 1.00 0.86 0.83 0.50 0.68 0.86 0.84 0.86
Camel_1_6 0.98 0.99 0.91 0.92 0.50 0.58 0.85 0.83 0.75
Jedit_3_4 0.73 0.79 0.94 0.90 0.94 0.96 0.97 0.79 1.00
Jedit_4_0 0.66 0.77 0.68 0.91 0.84 1.00 0.68 0.62 0.77
Jedit_4_2 1.00 0.70 0.84 0.92 0.80 0.78 0.39 0.72 0.98
Jedit_4_3 0.81 0.70 0.77 0.85 0.84 0.68 0.96 0.82 0.62
log4j_1_0 0.97 0.67 0.75 0.97 0.61 1.00 0.55 0.94 1.00
log4j_1_1 0.77 0.97 0.49 1.00 0.80 0.99 0.84 1.00 0.95
log4j_1_2 0.84 0.54 0.99 0.96 0.64 0.86 0.72 0.89 0.75
lucene_2_0 0.83 1.00 0.83 0.98 0.53 0.89 0.97 0.53 0.78
lucene_2_2 0.99 0.04 0.52 0.92 0.64 0.73 0.67 0.05 0.96
lucene_2_4 0.89 0.88 0.67 0.94 0.60 0.66 0.70 0.94 0.74
xalan_2_4 0.75 0.89 0.89 0.35 0.53 0.92 0.84 0.84 0.29
xalan_2_5 0.86 0.74 0.88 0.79 0.58 0.82 0.85 0.96 0.80
xalan_2_6 0.84 0.75 0.77 0.85 0.50 0.67 0.86 0.67 0.89
xalan_2_7 0.56 0.87 0.77 0.80 0.50 0.87 0.94 0.85 0.99
Average 0.83 0.77 0.81 0.85 0.64 0.79 0.81 0.80 0.84
Average per SI Algo. 0.80 0.76 0.81

• The best combination is GA-ANN.

• The best SI search algorithm to work with all three classifiers is ACO.

• The best ML algorithm to work with all three SI search algorithms is ANN.

• The worst combination is GA-DT.

5.4.3 Results of majority algorithm

Majority algorithm is a brand new approach FS algorithm proposed in this thesis

research, which considers all other FS combinations when building its solution,

the basic idea is to take the highest used features in the other FS algorithms

solutions. The number of features to be taken is equal to the average number of

selected features of all other combinations.

75

Based on the experiments majority algorithm proved to be very stable and

robust algorithm, which performs well on all the datasets, table 5.10 shows the

results of running the majority algorithm in all the 19 datasets. The average AUC

for running majority algorithm is 0.95 which outperforms the best algorithm GA-

ANN, the algorithm obtained 100% average AUC 6 datasets of 19, now we will

describe the rank of majority algorithm in each dataset.

• ANT: majority comes in the 6th place with average AUC 0.88 and 5 selected

features with average selected features 4.78.

• Camel_1_0: majority comes in the 1st place with average AUC 0.92 and 5

selected features with average selected features 4.34.

• Camel_1_2: majority comes in the 3rd place with average AUC 0.98 and

5 selected features with average selected features 4.89.

• Camel_1_4: majority comes in the 2nd place with average AUC 0.99 and

5 selected features with average selected features 4.45.

• Camel_1_6: majority comes in the 3rd place with average AUC 0.94 and

6 selected features with average selected features 5.11.

• Jedit_3_4: majority comes in the 1st place with average AUC 1.00 and 7

selected features with average selected features 6.78.

• Jedit_4_0: majority comes in the 1st place with average AUC 1.00 and 5

selected features with average selected features 4.56.

• Jedit_4_2: majority comes in the 1st place with average AUC 1.00 and 6

selected features with average selected features 5.33.

• Jedit_4_3: majority comes in the 2nd place with average AUC 0.90 and 5

selected features with average selected features 4.78.

76

• log4j_1_0: majority comes in the 1st place with average AUC 1.00 and 6

selected features with average selected features 5.33.

• log4j_1_1: majority comes in the 4th place with average AUC 0.96 and 6

selected features with average selected features 5.22.

• log4j_1_2: majority comes in the 4th place with average AUC 0.86 and 7

selected features with average selected features 6.22.

• lucene_2_0: majority comes in the 1st place with average AUC 1.00 and 6

selected features with average selected features 5.33.

• lucene_2_2: majority comes in the 2nd place with average AUC 0.97 and

5 selected features with average selected features 4.78.

• lucene_2_4: majority comes in the 3rd place with average AUC 0.90 and

7 selected features with average selected features 6.56.

• xalan_2_4: majority comes in the 1st place with average AUC 0.93 and 5

selected features with average selected features 4.78.

• xalan_2_5: majority comes in the 2nd place with average AUC 0.89 and 5

selected features with average selected features 4.33.

• xalan_2_6: majority comes in the 1st place with average AUC 0.96 and 5

selected features with average selected features 5.00.

• xalan_2_7: majority comes in the 1st place with average AUC 1.00 and 5

selected features with average selected features 4.889.

The ranking shows that the majority algorithm came in the 1st place for 9 datasets

out of 19, and 4 times in the 2nd place, which emphasize that the majority voting

approach outperforms other FS approaches.

77

Table 5.10: Results majority

Dataset AUC

ANT 0.88

Camel_1_0 0.92

Camel_1_2 0.98

Camel_1_4 0.99

Camel_1_6 0.94

Jedit_3_4 1.00

Jedit_4_0 1.00

Jedit_4_2 1.00

Jedit_4_3 0.90

log4j_1_0 1.00

log4j_1_1 0.96

log4j_1_2 0.86

lucene_2_0 1.00

lucene_2_2 0.97

lucene_2_4 0.90

xalan_2_4 0.93

xalan_2_5 0.89

xalan_2_6 0.96

xalan_2_7 1.00

Average 0.95

Statistical comparison using t-test with a significance level of 0.05 was conducted

as to compare majorty model with other FS models was done independently

against all 10 FS models. Table 5.11 presents the p-values of the obtained results

and mean difference. In this table, a p-value less than 0.05 indicates that there

78

is a statistical difference between results. The average increase when comparing

majority model with all 10 other models was found to be statistically significant

across all models.

Table 5.11: P-value results based on t-test

Majority

Model µ1 - µ2 P-value

Without FS 0.12 0.00042

PSO-ANN 0.12 0.00058

PSO-DT 0.18 0.00286

PSO-kNN 0.15 0.00099

GA-ANN 0.10 0.01127

GA-DT 0.32 1.4E-08

GA-kNN 0.16 0.00011

ACO-ANN 0.14 0.00261

ACO-DT 0.15 0.01305

ACO-kNN 0.12 0.00454

Table 5.12 compares results of majority voting FS model with several methods

in the literature. Turabieh [76] used random function to select from three FS

methods coming from combining ANN with three search algorithms (GA, PSO

and ACO), L-RNN was used as evaluator. Erturk & Sezer [28] used only 3 features

based on the recommendation from literature [62], namely (cbo, wmc and rfc) with

L-RNN as classifier. The comparison shows that majority voting technique came

in first place 18 times out of 19 with 0.11, 0.17, 0.14 increase in average from

results obtained by Turabieh, Erturk & Sezer respectively.

79

Table 5.12: Comparison between majority voting technique and
the sate-of-the art methods based on the average AUC values

Our Results Turabieh (Erturk and Sezer, 2016)

Dataset Majority Voting Turabieh ANN ANFIS

ANT 0.88 0.88 0.85 0.82

Camel_1_0 0.92 0.91 0.92 0.89

Camel_1_2 0.98 0.65 0.60 0.60

Camel_1_4 0.99 0.78 0.79 0.81

Camel_1_6 0.94 0.69 0.68 0.71

Jedit_3_4 1 0.92 0.88 0.90

Jedit_4_0 1 0.87 0.82 0.78

Jedit_4_2 1 0.89 0.88 0.98

Jedit_4_3 0.9 0.91 0.46 0.91

log4j_1_0 1 0.88 0.89 0.89

log4j_1_1 0.96 0.91 0.90 0.90

log4j_1_2 0.86 0.85 0.78 0.77

lucene_2_0 1 0.87 0.85 0.87

lucene_2_2 0.97 0.82 0.76 0.75

lucene_2_4 0.9 0.83 0.82 0.81

xalan_2_4 0.93 0.83 0.82 0.82

xalan_2_5 0.89 0.75 0.67 0.66

xalan_2_6 0.96 0.71 0.68 0.68

xalan_2_7 1 0.93 0.82 0.86

Average 0.95 0.84 0.78 0.81

Table 5.14 shows the number of selected features per dataset per algorithm, the

results show that in general ACO algorithm tends to select most features, on

80

Table 5.13: Example of features histogram to generate majority
solution

Feature number F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

Feature count 8 7 6 5 5 5 3 2 2 1

average for ACO per classifier more than 6 features has been selected for each

solution, in addition to GA_ANN with the average equals to 8 selected feature

which is the highest average, the more the features are selected the higher the

cost of running the algorithm.

Challenges. While designing an SFP model that depends on a Majority FS

algorithm it is important to consider two main issues. First the time needed

to run all other combinations before preparing the majority solution. It is

important to always think of the FS step in any SFP model as preliminary

stage, that selects the most important features of this project, then the SFP

model will be using those solutions many many times on the later stages

while developing the software project.

The second issue is in case of having two features with same frequency

then which feature to take, for example, table 5.13 shows 10 features and

how many each feature is selected in the 9 other combinations, assuming

that the majority solution need to consist of 4 features, then we will choose

F1, F2, F3 and on of these F4, F5, or F6, so which one to choose. In this

research all the combinations were tried. the best combination was taken,

the results varies a lot between each solution which emphasize on the fact

that some features work better with other features.

81

Table 5.14: Number of features selected per Algorithm per dataset

Dataset/Algo. PSO-ANN PSO-DT PSO-kNN GA-ANN GA-DT GA-kNN ACO-ANN ACO-DT ACO-kNN Majority

ANT 4 4 4 6 1 1 7 10 6 5
Camel_1_0 4 4 4 6 3 1 6 5 6 5
Camel_1_2 4 4 4 9 1 3 6 8 5 5
Camel_1_4 4 4 4 6 1 3 5 7 6 5
Camel_1_6 4 4 4 10 1 2 10 5 6 6
Jedit_3_4 4 4 4 9 3 5 9 6 8 7
Jedit_4_0 4 4 4 8 2 3 6 5 5 5
Jedit_4_2 4 4 4 11 2 3 8 5 7 6
Jedit_4_3 4 4 4 5 2 3 10 6 5 5
log4j_1_0 4 4 4 7 2 5 11 6 5 6
log4j_1_1 4 4 4 8 2 2 9 7 7 6
log4j_1_2 4 4 4 11 2 3 10 11 7 7
lucene_2_0 4 4 4 10 2 4 6 7 7 6
lucene_2_2 4 4 4 8 2 3 8 5 5 5
lucene_2_4 4 4 4 10 2 4 11 10 10 7
xalan_2_4 4 4 4 6 2 3 7 8 5 5
xalan_2_5 4 4 4 3 2 3 7 5 7 5
xalan_2_6 4 4 4 8 1 4 6 8 6 5
xalan_2_7 4 4 4 11 1 3 7 5 5 6
Average 4 4 4 8 1.79 3.05 7.84 6.79 6.21 5.63

Table 5.15 shows the solutions generated from each FS combination,

those solutions varies from run to run, however, those solution can be used

as a reference for this thesis results.

82

T
ab

le
5.
15
:
Se
le
ct
ed

so
lu
ti
on

fo
r
ea
ch

al
go
ri
th
m

pe
r
da

ta
se
t

D
at
as
et

A
lg
or
it
hm

P
SO

-A
N
N

P
SO

-D
T

P
SO

-k
N
N

G
A
-A

N
N

G
A
-D

T
G
A
-k
N
N

A
C
O
-A

N
N

A
C
O
-D

T
A
C
O
-k
N
N

M
aj
or
it
y

A
N
T

[1
1,
9,
8,
2]

[1
7,
2,
13
,1
6]

[1
,1
5,
20
,1
1]

[5
,1
1,
13
,1
4,
15
,1
6]

[1
9]

[1
;5
]

[1
6,
7,
17
,1
5,
19
,1
0,
11
]

[3
,1
7,
9,
18
,1
2,
16
,2
,8
,5
,2
0]

[1
1,
12
,1
6,
19
,8
,9
]

[1
1,
16
,2
,8
,9
]

C
am

el
_
1_

0
[1
,3
,1
6,
13
]

[1
9,
14
,6
,1
3]

[8
,9
,1
9,
16
]

[4
,7
,9
,1
0,
15
,1
6]

[9
,1
2,
17
]

[1
0]

[1
7,
2,
10
,1
8,
12
,4
]

[6
,1
4,
9,
11
,1
9]

[1
0,
6,
3,
14
,1
1,
13
]

[9
,1
0,
19
,1
6,
14
]

C
am

el
_
1_

2
[1
1,
14
,3
,2
0]

[1
6,
2,
17
,1
2]

[1
7,
7,
9,
4]

[1
,3
,4
,6
,9
,1
1,
12
,1
3,
17
]

[1
3]

[7
,8
,9
]

[8
,2
0,
9,
5,
14
,1
6]

[1
6,
20
,2
,1
7,
9,
19
,1
5,
11
]

[2
,1
5,
8,
9,
14
]

[9
,1
7,
2,
8,
11
]

C
am

el
_
1_

4
[1
1,
14
,1
9,
9]

[1
3,
17
,2
,1
6]

[1
3,
16
,9
,8
]

[1
,2
,4
,8
,1
4,
19
]

[1
6]

[5
,1
5,
16
]

[1
5,
16
,1
9,
4,
14
]

[9
,1
0,
13
,1
4,
1,
7,
2]

[1
,1
0,
16
,1
4,
19
,1
3]

[1
6,
14
,1
3,
19
,1
]

C
am

el
_
1_

6
[8
,4
,9
,1
]

[1
2,
19
,1
6,
17
]

[2
,2
0,
18
,4
]

[1
,4
,6
,7
,8
,1
0,
11
,1
3,
14
,1
6]

[2
]

[6
,7
]

[1
,1
8,
12
,1
6,
7,
14
,2
0,
13
,1
0,
19
]

[1
9,
12
,9
,1
6,
13
]

[1
2,
20
,4
,1
8,
6,
7]

[4
,7
,1
2,
16
,1
8,
0]

Je
di
t_

3_
4

[1
1,
2,
1,
12
]

[7
,1
2,
16
,4
]

[1
7,
2,
1,
18
]

[1
,4
,6
,1
0,
12
,1
4,
15
,1
7,
19
]

[1
5,
17
,1
9]

[1
,2
,1
2,
17
,1
8]

[9
,1
8,
15
,1
7,
11
,5
,1
,3
,1
9]

[9
,2
0,
7,
18
,1
7,
5]

[1
2,
6,
2,
1,
17
,1
9,
8,
14
]

[1
7,
1,
12
,2
,1
8,
19
,1
5]

Je
di
t_

4_
0

[2
,6
,8
,1
2]

[1
4,
2,
1,
12
]

[2
,1
6,
10
,9
]

[6
,8
,9
,1
0,
12
,1
4,
17
,2
0]

[1
,1
2]

[1
7,
19
,2
0]

[2
,1
9,
4,
13
,1
6,
9]

[1
8,
12
,1
3,
3,
17
]

[1
7,
14
,3
,9
,2
0]

[1
2,
2,
9,
17
,1
4]

Je
di
t_

4_
2

[7
,5
,1
5,
1]

[1
7,
16
,7
,1
3]

[7
,1
6,
13
,2
0]

[3
,4
,7
,8
,9
,1
0,
11
,1
4,
15
,1
6,
17
]

[1
,1
2]

[4
,1
3,
20
]

[3
,5
,1
0,
4,
12
,1
7,
7,
15
]

[2
,1
9,
13
,5
,9
]

[2
0,
10
,1
7,
2,
9,
18
,1
]

[7
,1
3,
17
,2
0,
1,
5]

Je
di
t_

4_
3

[8
,1
7,
13
,1
2]

[2
,1
2,
13
,9
]

[7
,1
,1
0,
13
]

[2
,7
,8
,1
2,
17
]

[1
,1
2]

[4
,1
3,
20
]

[1
0,
12
,1
7,
15
,4
,1
9,
14
,9
,2
0,
2]

[1
2,
2,
13
,2
0,
9,
10
]

[8
,1
6,
18
,5
,3
]

[1
2,
13
,2
,2
0,
9]

lo
g4
j_

1_
0

[7
,9
,1
6,
5]

[3
,7
,1
4,
9]

[9
,4
,5
,3
]

[1
,4
,5
,9
,1
4,
16
,1
8]

[7
,9
]

[1
,4
,5
,9
,1
9]

[9
,6
,1
3,
1,
7,
5,
12
,1
8,
16
,8
,2
]

[7
,1
6,
19
,1
3,
1,
18
]

[1
0,
20
,1
9,
5,
9]

[9
,5
,7
,1
,1
6,
4]

lo
g4
j_

1_
1

[6
,9
,5
,1
3]

[6
,1
,1
4,
16
]

[9
,5
,1
4,
3]

[1
,3
,5
,9
,1
1,
13
,1
8,
20
]

[7
,9
]

[5
,9
]

[1
6,
7,
10
,1
,5
,1
2,
11
,1
8,
6]

[3
,7
,1
6,
17
,1
,8
,5
]

[2
0,
1,
16
,7
,5
,9
,1
4]

[5
,9
,1
,7
,1
6,
14
]

lo
g4
j_

1_
2

[1
2,
2,
17
,1
]

[1
6,
3,
17
,1
3]

[7
,2
,1
,5
]

[1
,3
,4
,6
,9
,1
0,
11
,1
2,
14
,1
6,
17
]

[7
,9
]

[6
,8
,1
5]

[6
,9
,7
,4
,1
3,
16
,1
9,
10
,1
7,
8]

[1
9,
20
,2
,1
5,
3,
4,
18
,1
4,
7,
6,
17
]

[5
,1
7,
2,
4,
10
,1
6,
13
]

[1
7,
2,
4,
6,
7,
16
,9
]

lu
ce
ne
_
2_

0
[1
9,
18
,1
7,
1]

[8
,1
7,
14
,1
6]

[1
9,
18
,1
4,
5]

[4
,5
,6
,7
,1
0,
11
,1
4,
15
,1
6,
17
]

[7
,9
]

[3
,5
,1
7,
18
]

[1
5,
8,
5,
2,
16
,2
0]

[2
0,
17
,1
3,
8,
5,
3,
10
]

[1
3,
18
,1
,1
4,
5,
8,
6]

[5
,1
7,
8,
14
,1
8,
16
]

lu
ce
ne
_
2_

2
[2
,9
,1
,5
]

[9
,5
,1
3,
15
]

[1
8,
1,
15
,1
0]

[1
,3
,6
,9
,1
2,
18
,1
9,
20
]

[7
,9
]

[4
,9
,1
6]

[5
,9
,8
,1
,1
1,
10
,1
5,
6]

[1
2,
1,
14
,1
8,
2]

[4
,1
2,
1,
16
,1
7]

[1
,9
,5
,1
2,
15
]

lu
ce
ne
_
2_

4
[5
,7
,1
6,
4]

[2
,1
3,
8,
16
]

[5
,1
5,
4,
3]

[2
,4
,5
,6
,1
0,
12
,1
6,
17
,1
8,
20
]

[7
,1
8]

[3
,4
,5
,1
6]

[1
8,
1,
10
,7
,1
3,
4,
14
,1
6,
8,
5,
19
]

[9
,1
4,
10
,3
,1
3,
7,
11
,8
,2
,1
8]

[2
,1
9,
9,
15
,7
,5
,8
,2
0,
4,
6]

[4
,5
,7
,1
6,
2,
8,
18
]

xa
la
n_

2_
4

[4
,1
1,
2,
7]

[1
7,
3,
16
,2
]

[7
,2
,4
,1
1]

[2
,7
,8
,1
1,
12
,1
5]

[7
,9
]

[7
,8
,1
1]

[5
,2
,1
1,
20
,1
0,
3,
13
]

[9
,1
8,
20
,1
6,
14
,1
,1
7,
8]

[1
1,
16
,8
,1
2,
15
]

[1
1,
2,
7,
8,
16
]

xa
la
n_

2_
5

[1
4,
19
,5
,4
]

[1
0,
17
,7
,2
]

[1
5,
14
,1
0,
20
]

[5
,8
,1
4]

[7
,9
]

[8
,9
,1
8]

[1
7,
20
,1
1,
14
,1
0,
9,
4]

[1
8,
11
,1
4,
8,
16
]

[2
0,
8,
1,
17
,4
,1
0,
9]

[1
4,
8,
9,
10
,1
7]

xa
la
n_

2_
6

[1
1,
5,
8,
17
]

[1
7,
10
,1
4,
7]

[7
,1
0,
17
,4
]

[2
,3
,5
,8
,9
,1
3,
15
,1
8]

[1
4]

[1
,4
,1
0,
17
]

[3
,1
8,
9,
17
,1
1,
4]

[1
6,
14
,4
,1
5,
9,
13
,1
8,
3]

[1
0,
15
,8
,1
,1
7,
14
]

[1
7,
4,
10
,1
4,
18
]

xa
la
n_

2_
7

[1
8,
1,
9,
2]

[5
,1
7,
4,
18
]

[5
,1
8,
20
,8
]

[1
,2
,3
,5
,6
,7
,9
,1
1,
13
,1
4,
15
]

[1
4]

[5
,8
,1
8]

[6
,1
0,
2,
8,
17
,1
8,
1]

[8
,1
2,
14
,1
1,
19
]

[6
,1
8,
12
,5
,1
1]

[1
8,
5,
8,
14
,2
,6
]

83

5.4.4 Most Used Features

Figure 5.3 shows the count of how many each feature is selected in the 9

different combinations solutions, below the analysis:

• npm (number of public methods) and got selected 69 times.

• cbm (coupling between methods) which is object oriented metric and

got selected 57 times.

• ic (inheritance coupling) which is object oriented metric and got se-

lected 54 times.

• wmc (weighted method per class) which is object oriented metric and

got selected 50 times.

• rfc (response for a class) which is object oriented metric and got se-

lected 50 times.

• ca (afferent couplings) which is object oriented metric and got selected

50 times.

From the above results it can be observed that the top selected 6 met-

rics are object oriented metrics, based on our assumption the most used

features are the most important features, and all of them are OO metrics

as mentioned in other references like [20, 19, 62]

Table 5.16 shows the histogram of features selection per dataset, this

table describes the importance of each feature to this dataset, for example

feature npm selected from 8 algorithms from our 9 algorithms for dataset

log4j_1_0 and feature rfc selected from 7 algorithms from our 9 algorithms.

84

Figure 5.3: Features selection histogram.

5.4.5 Summary

• SFP model without FS achieved 0.84 average AUC on all datasets.

• The best FS combination is GA-ANN with average AUC 0.85.

• The best search algorithm to work with all three classifiers is ACO.

• The best classifier to work with all three search algorithms is ANN.

• The worst FS combination is GA-DT.

• Majority voting technique outperforms all other techniques with min-

imum 0.10 increase in average AUC with average AUC equals to 0.95.

• ACO search algorithm tends to choose more features than PSO and

GA with average selected 7 features compared to average 4 features

and 4.28 features for PSO and GA respectively.

85

Table 5.16: Features histogram

Dataset
Feature wmc dit noc cbo rfc lcom ca ce npm lcom3 loc dam moa mfa cam ic cbm amc max_cc avg_cc

ANT 2 3 1 0 2 0 1 3 3 1 5 2 2 1 3 5 3 1 3 2
Camel_1_0 0 1 2 3 0 3 2 1 4 4 2 2 3 3 1 2 2 1 3 0
Camel_1_2 1 3 2 2 1 1 2 3 6 0 3 2 2 3 2 3 4 0 1 3
Camel_1_4 3 3 0 2 1 0 1 2 3 2 1 0 4 5 2 6 1 0 4 0
Camel_1_6 3 2 0 4 0 3 4 2 2 2 1 4 3 2 0 4 1 3 3 3
Jedit_3_4 6 4 1 2 2 2 2 1 2 1 2 5 0 2 3 1 7 4 4 1
Jedit_4_0 2 4 2 1 0 2 0 2 4 2 0 5 2 3 0 2 4 1 2 3
Jedit_4_2 3 2 2 3 3 0 5 1 3 3 1 2 4 1 3 3 4 1 1 4
Jedit_4_3 2 4 1 2 1 0 2 3 3 3 0 6 5 1 1 1 3 1 1 3
log4j_1_0 4 1 2 3 6 1 5 1 8 1 0 1 2 2 0 4 0 3 3 1
log4j_1_1 5 0 3 0 7 3 4 1 6 1 2 1 2 3 0 4 1 2 0 2
log4j_1_2 3 4 3 4 2 4 4 2 3 3 1 2 3 2 2 4 6 1 2 2
lucene_2_0 2 1 2 1 6 2 2 4 1 2 1 0 2 4 2 3 5 4 2 2
lucene_2_2 6 2 1 2 3 2 1 1 6 2 1 3 1 1 3 2 1 3 1 1
lucene_2_4 1 4 3 6 6 2 5 4 4 3 1 1 3 2 2 5 1 3 2 2
xalan_2_4 1 5 2 2 1 0 5 4 2 1 6 2 1 1 2 3 2 1 0 2
xalan_2_5 1 1 0 3 2 0 2 4 4 4 2 0 0 5 1 1 3 2 1 3
xalan_2_6 2 1 3 4 2 0 2 3 3 4 2 0 2 4 3 1 6 3 0 0
xalan_2_7 3 3 1 1 5 3 1 4 2 1 3 2 1 3 1 0 3 6 2 1

• npm, cbm, ic, wmc, rfc, ca are the most selected features and all of

them are OO metrics.

86

Chapter 6

Conclusion and Future Direction

In the previous chapters, a set of SFP models have been investigated to

predict the faulty modules in software projects. Different SFP models re-

sults has been compared and analyzed. In this chapter, a conclusion of this

research work and future direction and recommendations.

6.1 Conclusion

Traditional software QA methods are time consuming and error-prone [16].

That increases the importance of fault prediction models, that highlights

faulty modules to be more focused on while doing QA activities and helps

in finding potential bugs in early stages. The earlier the bugs caught the

lower the cost to fix them, this cost rises in an exponential manner with the

time and stage of catching those bugs in SDLC and also catching bugs in

earlier releases enhance the overall product quality in later releases.

SFP models varies from depending on software metrics to ML and soft

computing [63]. Metrics based models depends on a set of predefined met-

rics to predict faults. Metrics based models suffers from getting stuck in

87

detecting bugs in same areas of software for same dataset as well as for

other datasets [82].

ML based models outperformed traditional models in extracting knowl-

edge from data even if data is imprecise and/or incomplete and so in clas-

sifying software modules as faulty and non-faulty [53]. This research used

three different ML algorithms as classifiers which (DT, ANN, kNN) and one

as evaluator (L-RNN).

The main challenge that face the ML algorithms is the high dimension-

ality. FS is one of the dimensionality reduction techniques that proved its

ability to improve the performance of different learning algorithms [51]. The

latest FS methods in the literature use metaheuristics algorithms as search-

ing strategies to determine the most important features in a dataset. Due

to the fact that there is no method that show superior performance for all

optimization problems, this research proposed the use of the well known SI

algorithms (i.e., PSO and ACO), and an Evolutionary Algorithm (i.e., GA)

with the well known classification algorithms (i.e., KNN, DT and ANN) to

get the best combination that could select the most informative features

that yield the highest classification accuracy in the L-RNN model which is

used in the validation phase.

In this research, new FS selection method introduced based on majority

voting technique. Majority voting technique depends on taking the most

selected features in 9 different combinations of search algorithms and clas-

sifiers. Number of features to be taken is the average number of features

that selected in the 9 solutions from the 9 combinations.

The experiments conducted in this research shows that majority voting

88

techniques outperformed all other 9 FS methods with minimum 10% in-

crease in accuracy with average AUC 0.95% when running on 19 datasets,

for many of the datasets the classification accuracy was 100%. Moreover,

majority technique is promising when it comes to re-usability that is reusing

the same set of selected features for dataset in predicting the faults of other

datasets.

This research compared the results of running L-RNN model without

FS, with FS using the 9 combinations and majority voting technique. The

experiments shows that the best FS combination is GA-ANN with average

AUC 0.85, the best search algorithm to work with all three classifiers is

ACO, ACO tends to choose more features that PSO and GA with 7 selected

features on average.

The best classifier to work with all three search algorithms is ANN.

However, the worst FS combination is GA-DT. Our experiments shows that

the highest features that got selected are all OO metrics namely npm, cbm,

ic, wmc, rfc, ca.

6.2 Future Direction

As future directions we need to tackle the performance problem of running

all combinations before deciding the best set of features, techniques like

incremental majority voting may be experimented. The current majority

solution needs all other combinations solution to be calculated first which

result in long run time. We also recommend the exploration of general

solution existence based on majority voting. In this research the majority

voting solution has been calculated for each dataset, the goal is to reach for a

solution that can be used as predefined solution for new datasets with similar

89

characteristics. Another important research area that we highly recommend

studying it, is where to inject SFP models in SDLC in real environments,

in which phase will it be more effective, and will it really reduce the cost

of software QA in such environments. We also recommend running the

majority technique in more datasets with different characteristics, bigger in

size and in from industrial environments.

90

Bibliography

[1] Hojjat Adeli and Shih-Lin Hung. Machine learning: neural networks, genetic

algorithms, and fuzzy systems. John Wiley & Sons, Inc., 1994.

[2] Mehdi Hosseinzadeh Aghdam, Nasser Ghasem-Aghaee, and Mohammad

Ehsan Basiri. “Text feature selection using ant colony optimization”. In:

Expert systems with applications 36.3 (2009), pp. 6843–6853.

[3] Hamoud I Aljamaan and Mahmoud O Elish. “An empirical study of bag-

ging and boosting ensembles for identifying faulty classes in object-oriented

software”. In: Computational Intelligence and Data Mining, 2009. CIDM’09.

IEEE Symposium on. IEEE. 2009, pp. 187–194.

[4] Ahmed Al-Ani. “Feature subset selection using ant colony optimization”. In:

International journal of computational intelligence (2005).

[5] Erik Arisholm, Lionel C Briand, and Eivind B Johannessen. “A systematic

and comprehensive investigation of methods to build and evaluate fault

prediction models”. In: Journal of Systems and Software 83.1 (2010), pp. 2–

17.

[6] Kent Beck et al. “Manifesto for agile software development”. In: (2001).

[7] Rafael Bello et al. “Two-step particle swarm optimization to solve the feature

selection problem”. In: Intelligent Systems Design and Applications, 2007.

ISDA 2007. Seventh International Conference on. IEEE. 2007, pp. 691–696.

91

[8] David Binkley et al. “Software fault prediction using language processing”.

In: Testing: Academic and Industrial Conference Practice and Research

Techniques-MUTATION, 2007. TAICPART-MUTATION 2007. IEEE. 2007,

pp. 99–110.

[9] Christian Blum. “Ant colony optimization: Introduction and recent trends”.

In: Physics of Life reviews 2.4 (2005), pp. 353–373.

[10] Fletcher J Buckley and Robert Poston. “Software quality assurance”. In:

IEEE Transactions on Software Engineering 1 (1984), pp. 36–41.

[11] Jaspar Cahill, James M Hogan, and Richard Thomas. “Predicting fault-

prone software modules with rank sum classification”. In: Software Engi-

neering Conference (ASWEC), 2013 22nd Australian. IEEE. 2013, pp. 211–

219.

[12] Gabriella Carrozza et al. “Analysis and prediction of mandelbugs in an

industrial software system”. In: Software Testing, Verification and Validation

(ICST), 2013 IEEE Sixth International Conference on. IEEE. 2013, pp. 262–

271.

[13] Cagatay Catal. “Software fault prediction: A literature review and current

trends”. In: Expert systems with applications 38.4 (2011), pp. 4626–4636.

[14] Cagatay Catal and Banu Diri. “A fault prediction model with limited fault

data to improve test process”. In: International Conference on Product Fo-

cused Software Process Improvement. Springer. 2008, pp. 244–257.

[15] Cagatay Catal and Banu Diri. “Investigating the effect of dataset size, met-

rics sets, and feature selection techniques on software fault prediction prob-

lem”. In: Information Sciences 179.8 (2009), pp. 1040–1058.

92

[16] Venkata UB Challagulla, Farokh B Bastani, and I-Ling Yen. “A unified

framework for defect data analysis using the mbr technique”. In: null. IEEE.

2006, pp. 39–46.

[17] Girish Chandrashekar and Ferat Sahin. “A survey on feature selection meth-

ods”. In: Computers & Electrical Engineering 40.1 (2014), pp. 16–28.

[18] Ching-Pao Chang, Chih-Ping Chu, and Yu-Fang Yeh. “Integrating in-process

software defect prediction with association mining to discover defect pat-

tern”. In: Information and software technology 51.2 (2009), pp. 375–384.

[19] Shyam R Chidamber and Chris F Kemerer. “A metrics suite for object

oriented design”. In: IEEE Transactions on software engineering 20.6 (1994),

pp. 476–493.

[20] Shyam R Chidamber and Chris F Kemerer. Towards a metrics suite for

object oriented design. Vol. 26. 11. ACM, 1991.

[21] Marco D’Ambros, Michele Lanza, and Romain Robbes. “An extensive com-

parison of bug prediction approaches”. In: Mining Software Repositories

(MSR), 2010 7th IEEE Working Conference on. IEEE. 2010, pp. 31–41.

[22] Silvia N das Dôres et al. “A meta-learning framework for algorithm recom-

mendation in software fault prediction”. In: Proceedings of the 31st Annual

ACM Symposium on Applied Computing. ACM. 2016, pp. 1486–1491.

[23] Marco Dorigo and Mauro Birattari. “Ant colony optimization”. In: Encyclo-

pedia of machine learning. Springer, 2011, pp. 36–39.

[24] Marco Dorigo and Gianni Di Caro. “Ant colony optimization: a new meta-

heuristic”. In: Evolutionary Computation, 1999. CEC 99. Proceedings of the

1999 Congress on. Vol. 2. IEEE. 1999, pp. 1470–1477.

93

[25] Marco Dorigo and Luca Maria Gambardella. “Ant colonies for the travelling

salesman problem”. In: biosystems 43.2 (1997), pp. 73–81.

[26] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. “Ant system: op-

timization by a colony of cooperating agents”. In: IEEE Transactions on

Systems, Man, and Cybernetics, Part B (Cybernetics) 26.1 (1996), pp. 29–

41.

[27] Russell C Eberhart and Yuhui Shi. “Comparison between genetic algorithms

and particle swarm optimization”. In: International conference on evolution-

ary programming. Springer. 1998, pp. 611–616.

[28] Ezgi Erturk and Ebru Akcapinar Sezer. “Iterative software fault prediction

with a hybrid approach”. In: Applied Soft Computing 49 (2016), pp. 1020–

1033.

[29] Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. “From

data mining to knowledge discovery in databases”. In: AI magazine 17.3

(1996), p. 37.

[30] Robert Firth et al. A guide to the classification and assessment of software

engineering tools. Tech. rep. CARNEGIE-MELLON UNIV PITTSBURGH

PA SOFTWARE ENGINEERING INST, 1987.

[31] Daniel Galin. Software quality assurance: from theory to implementation.

Pearson Education India, 2004.

[32] David E Goldberg and John H Holland. “Genetic algorithms and machine

learning”. In: Machine learning 3.2 (1988), pp. 95–99.

[33] Isabelle Guyon and André Elisseeff. “An introduction to variable and feature

selection”. In: Journal of machine learning research 3.Mar (2003), pp. 1157–

1182.

94

[34] Tibor Gyimothy, Rudolf Ferenc, and Istvan Siket. “Empirical validation of

object-oriented metrics on open source software for fault prediction”. In:

IEEE Transactions on Software engineering 31.10 (2005), pp. 897–910.

[35] Tracy Hall et al. “A systematic literature review on fault prediction perfor-

mance in software engineering”. In: IEEE Transactions on Software Engi-

neering 38.6 (2012), pp. 1276–1304.

[36] Maurice H Halstead et al. Elements of Software Science (Operating and

programming systems series). Elsevier Science Inc., New York, NY, 1977.

[37] Georgef Hepner et al. “Artificial neural network classification using a mini-

mal training set- Comparison to conventional supervised classification”. In:

Photogrammetric Engineering and Remote Sensing 56.4 (1990), pp. 469–

473.

[38] David W Hosmer Jr, Stanley Lemeshow, and Rodney X Sturdivant. Applied

logistic regression. Vol. 398. John Wiley & Sons, 2013.

[39] George H. John, Ron Kohavi, and Karl Pfleger. “Irrelevant Features and

the Subset Selection Problem”. In: MACHINE LEARNING: PROCEED-

INGS OF THE ELEVENTH INTERNATIONAL. Morgan Kaufmann, 1994,

pp. 121–129.

[40] Anum Kalsoom et al. “A dimensionality reduction-based efficient software

fault prediction using Fisher linear discriminant analysis (FLDA)”. In: The

Journal of Supercomputing (2018), pp. 1–35.

[41] Shima Kashef and Hossein Nezamabadi-pour. “An advanced ACO algorithm

for feature subset selection”. In: Neurocomputing 147 (2015), pp. 271–279.

95

[42] Gopalan Kesavaraj and Sreekumar Sukumaran. “A study on classification

techniques in data mining”. In: Computing, Communications and Network-

ing Technologies (ICCCNT), 2013 Fourth International Conference on. IEEE.

2013, pp. 1–7.

[43] Taghi M Khoshgoftaar, Erik Geleyn, and Laruent Nguyen. “Empirical case

studies of combining software quality classification models”. In: Quality Soft-

ware, 2003. Proceedings. Third International Conference on. IEEE. 2003,

pp. 40–49.

[44] Barbara A Kitchenham. “Software quality assurance”. In: Microprocessors

and microsystems 13.6 (1989), pp. 373–381.

[45] Ron Kohavi and George H John. “Wrappers for feature subset selection”.

In: Artificial intelligence 97.1-2 (1997), pp. 273–324.

[46] A Güneş Koru et al. “Theory of relative defect proneness”. In: Empirical

Software Engineering 13.5 (2008), p. 473.

[47] Stefan Lessmann et al. “Benchmarking classification models for software de-

fect prediction: A proposed framework and novel findings”. In: IEEE Trans-

actions on Software Engineering 34.4 (2008), pp. 485–496.

[48] Hareton KN Leung and Lee White. “Insights into regression testing (soft-

ware testing)”. In: Software Maintenance, 1989., Proceedings., Conference

on. IEEE. 1989, pp. 60–69.

[49] Zachary C Lipton, John Berkowitz, and Charles Elkan. “A critical review of

recurrent neural networks for sequence learning”. In: arXiv preprint arXiv:1506.00019

(2015).

[50] Huan Liu and Hiroshi Motoda. Feature extraction, construction and se-

lection: A data mining perspective. Vol. 453. Springer Science & Business

Media, 1998.

96

[51] Huan Liu and Hiroshi Motoda. Feature selection for knowledge discovery

and data mining. Vol. 454. Springer Science & Business Media, 2012.

[52] MMahalakshmi and M Sundararajan. “Traditional SDLC Vs ScrumMethodology–

A Comparative Study”. In: International Journal of Emerging Technology

and Advanced Engineering 3.6 (2013), pp. 192–196.

[53] Ruchika Malhotra. “A systematic review of machine learning techniques for

software fault prediction”. In: Applied Soft Computing 27 (2015), pp. 504–

518.

[54] Rammohan Mallipeddi et al. “Differential evolution algorithm with ensem-

ble of parameters and mutation strategies”. In: Applied soft computing 11.2

(2011), pp. 1679–1696.

[55] Alianna J Maren, Craig T Harston, and Robert M Pap. Handbook of neural

computing applications. Academic Press, 2014.

[56] Thilo Mende and Rainer Koschke. “Revisiting the evaluation of defect pre-

diction models”. In: Proceedings of the 5th International Conference on

Predictor Models in Software Engineering. ACM. 2009, p. 7.

[57] Tim Menzies, Jeremy Greenwald, and Art Frank. “Data mining static code

attributes to learn defect predictors”. In: IEEE transactions on software

engineering 33.1 (2007), pp. 2–13.

[58] Ayşe Tosun Mısırlı, Ayşe Başar Bener, and Burak Turhan. “An industrial

case study of classifier ensembles for locating software defects”. In: Software

Quality Journal 19.3 (2011), pp. 515–536.

[59] Chris Murphy. “Is Data Mining Free Speech?” In: InformationWeek (2011).

[60] Glenford J Myers, Corey Sandler, and Tom Badgett. The art of software

testing. John Wiley & Sons, 2011.

97

[61] Dawn M Owens and Deepak Khazanchi. “Software quality assurance”. In:

Handbook of Research on Technology Project Management, Planning, and

Operations. IGI Global, 2009, pp. 242–260.

[62] Danijel Radjenović et al. “Software fault prediction metrics: A systematic

literature review”. In: Information and Software Technology 55.8 (2013),

pp. 1397–1418.

[63] Santosh S Rathore and Sandeep Kumar. “A decision tree logic based recom-

mendation system to select software fault prediction techniques”. In: Com-

puting 99.3 (2017), pp. 255–285.

[64] P Ashok Reddy, K Rajasekhara Rao, and M Babu Reddy. “Performance

evaluation of procedural metrics and object oriented metrics”. In: Interna-

tional Journal of Research Studies in Computer Science and Engineering

2.3 (2015), pp. 69–72.

[65] J. Sayyad Shirabad and T.J. Menzies. The PROMISE Repository of Soft-

ware Engineering Databases. School of Information Technology and Engi-

neering, University of Ottawa, Canada. 2005. url: http : / / promise . site .

uottawa.ca/SERepository.

[66] Gordon Gordon Schulmeyer and James I McManus. Handbook of software

quality assurance. Van Nostrand Reinhold Co., 1992.

[67] Raed Shatnawi. “The application of ROC analysis in threshold identifica-

tion, data imbalance and metrics selection for software fault prediction”. In:

Innovations in Systems and Software Engineering 13.2-3 (2017), pp. 201–

217.

[68] Martin Shepperd et al. NASA MDP Software Defects Data Sets. Mar. 2018.

doi: 10 . 6084 /m9 . figshare . c . 4054940 . v1. url: https : / / figshare . com /

collections/NASA_MDP_Software_Defects_Data_Sets/4054940/1.

http://promise.site.uottawa.ca/SERepository
http://promise.site.uottawa.ca/SERepository
http://dx.doi.org/10.6084/m9.figshare.c.4054940.v1
https://figshare.com/collections/NASA_MDP_Software_Defects_Data_Sets/4054940/1
https://figshare.com/collections/NASA_MDP_Software_Defects_Data_Sets/4054940/1

98

[69] David J Sheskin. Handbook of parametric and nonparametric statistical

procedures. crc Press, 2003.

[70] Qinbao Song et al. “A general software defect-proneness prediction frame-

work”. In: IEEE Transactions on Software Engineering 37.3 (2011), pp. 356–

370.

[71] Jerffeson Souza, Nathalie Japkowicz, and Stan Matwin. “Feature selection

with a general hybrid algorithm”. In: Feature Selection for Data Mining

(2005), p. 45.

[72] E-G Talbi. “A taxonomy of hybrid metaheuristics”. In: Journal of heuristics

8.5 (2002), pp. 541–564.

[73] El-Ghazali Talbi. Metaheuristics: from design to implementation. Vol. 74.

John Wiley & Sons, 2009.

[74] Pang-Ning Tan et al. Introduction to data mining. Pearson Education India,

2006.

[75] Ayşe Tosun, Burak Turhan, and Ayşe Bener. “Validation of network mea-

sures as indicators of defective modules in software systems”. In: Proceedings

of the 5th international conference on predictor models in software engineer-

ing. ACM. 2009, p. 5.

[76] Hamza Turabieh, Majdi Mafarja, and Xiaodong Li. “Iterated feature se-

lection algorithms with layered recurrent neural network for software fault

prediction”. In: Expert Systems with Applications 122 (2019), pp. 27–42.

[77] Bhekisipho Twala. “Software faults prediction using multiple classifiers”.

In: Computer Research and Development (ICCRD), 2011 3rd International

Conference on. Vol. 4. IEEE. 2011, pp. 504–510.

99

[78] David H Wolpert and William G Macready. “No free lunch theorems for op-

timization”. In: IEEE transactions on evolutionary computation 1.1 (1997),

pp. 67–82.

[79] Bingbing Yang et al. “Software quality prediction using affinity propagation

algorithm”. In: Neural Networks, 2008. IJCNN 2008.(IEEE World Congress

on Computational Intelligence). IEEE International Joint Conference on.

IEEE. 2008, pp. 1891–1896.

[80] Amin Zarshenas and Kenji Suzuki. “Binary coordinate ascent: An efficient

optimization technique for feature subset selection for machine learning”.

In: Knowledge-Based Systems 110 (2016), pp. 191–201.

[81] Feng Zhang et al. “Towards building a universal defect prediction model

with rank transformed predictors”. In: Empirical Software Engineering 21.5

(2016), pp. 2107–2145.

[82] Thomas Zimmermann, Nachiappan Nagappan, and Andreas Zeller. “Pre-

dicting bugs from history”. In: Software Evolution. Springer, 2008, pp. 69–

88.

	Acknowledgements
	Abstract
	Introduction
	Motivation
	SFP, where to use?

	Problem Statement
	Research Objectives
	Thesis Organization

	Background
	Software Fault Prediction (SFP)
	Quality Metrics
	Machine Learning (ML)
	Feature Selection (FS)
	Meta-heuristic Optimization Algorithms

	Related Work
	Research Methodology
	Research Approach
	Data Collection
	Implementation and validation Phase
	Analysis phase

	Results
	Experimental setup
	Datasets
	Performance Metrics
	Experimental Results
	Results without FS
	Results with FS
	Results of majority algorithm
	Most Used Features
	Summary

	Conclusion and Future Direction
	Conclusion
	Future Direction

